The protein methylation network in yeast: A landmark in completeness for a eukaryotic post-translational modification

Author:

Hamey Joshua J.1ORCID,Wilkins Marc R.1ORCID

Affiliation:

1. Systems Biology Initiative, School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia

Abstract

Defining all sites for a post-translational modification in the cell, and identifying their upstream modifying enzymes, is essential for a complete understanding of a modification’s function. However, the complete mapping of a modification in the proteome and definition of its associated enzyme–substrate network is rarely achieved. Here, we present the protein methylation network for Saccharomyces cerevisiae. Through a formal process of defining and quantifying all potential sources of incompleteness, for both the methylation sites in the proteome and also protein methyltransferases, we prove that this protein methylation network is now near-complete. It contains 33 methylated proteins and 28 methyltransferases, comprising 44 enzyme-substrate relationships, and a predicted further three enzymes. While the precise molecular function of most methylation sites is unknown, and it remains possible that other sites and enzymes remain undiscovered, the completeness of this protein modification network is unprecedented and allows us to holistically explore the role and evolution of protein methylation in the eukaryotic cell. We show that while no single protein methylation event is essential in yeast, the vast majority of methylated proteins are themselves essential, being primarily involved in the core cellular processes of transcription, RNA processing, and translation. This suggests that protein methylation in lower eukaryotes exists to fine-tune proteins whose sequences are evolutionarily constrained, providing an improvement in the efficiency of their cognate processes. The approach described here, for the construction and evaluation of post-translational modification networks and their constituent enzymes and substrates, defines a formal process of utility for other post-translational modifications.

Funder

Department of Education | Australian Research Council

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3