Recruitment Times, Proliferation, and Apoptosis Rates during the CD8 + T-Cell Response to Lymphocytic Choriomeningitis Virus

Author:

De Boer Rob J.1,Oprea Mihaela2,Antia Rustom3,Murali-Krishna Kaja4,Ahmed Rafi4,Perelson Alan S.2

Affiliation:

1. Theoretical Biology, Utrecht University, 3584 CH Utrecht, The Netherlands1;

2. Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 875452; and

3. Department of Biology3 and

4. Emory Vaccine Center and Department of Microbiology and Immunology,4 Emory University, Atlanta, Georgia 30322

Abstract

ABSTRACT The specific CD8 + T-cell response during acute lymphocytic choriomeningitis virus (LCMV) infection of mice is characterized by a rapid proliferation phase, followed by a rapid death phase and long-term memory. In BALB/c mice the immunodominant and subdominant CD8 + responses are directed against the NP118 and GP283 epitopes. These responses differ mainly in the magnitude of the epitope-specific CD8 + T-cell expansion. Using mathematical models together with a nonlinear parameter estimation procedure, we estimate the parameters describing the rates of change during the three phases and thereby establish the differences between the responses to the two epitopes. We find that CD8 + cell proliferation begins 1 to 2 days after infection and occurs at an average rate of 3 day −1 , reaching the maximum population size between days 5 and 6 after immunization. The 10-fold difference in expansion to the NP118 and GP283 epitopes can be accounted for in our model by a 3.5-fold difference in the antigen concentration of these epitopes at which T-cell stimulation is half-maximal. As a consequence of this 3.5-fold difference in the epitope concentration needed for T-cell stimulation, the rates of activation and proliferation of T cells specific for the two epitopes differ during the response and in combination can account for the large difference in the magnitude of the response. After the peak, during the death phase, the population declines at a rate of 0.5 day −1 , i.e., cells have an average life time of 2 days. The model accounts for a memory cell population of 5% of the peak population size by a reversal to memory of 1 to 2% of the activated cells per day during the death phase.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Cited by 159 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3