Opening Pandora's box: caveats with using toolbox-based approaches in mathematical modeling in biology

Author:

Ganusov Vitaly V.

Abstract

Mathematical modeling is a powerful method to understand how biological systems work. By creating a mathematical model of a given phenomenon one can investigate which model assumptions are needed to explain the phenomenon and which assumptions can be omitted. Creating an appropriate mathematical model (or a set of models) for a given biological system is an art, and classical textbooks on mathematical modeling in biology go into great detail in discussing how mathematical models can be understood via analytical and numerical analyses. In the last few decades mathematical modeling in biology has grown in size and complexity, and along with this growth new tools for the analysis of mathematical models and/or comparing models to data have been proposed. Examples of tools include methods of sensitivity analyses, methods for comparing alternative models to data (based on AIC/BIC/etc.), and mixed-effect-based fitting of models to data. I argue that the use of many of these “toolbox” approaches for the analysis of mathematical models has negatively impacted the basic philosophical principle of the modeling—to understand what the model does and why it does what it does. I provide several examples of limitations of these toolbox-based approaches and how they hamper generation of insights about the system in question. I also argue that while we should learn new ways to automate mathematical modeling-based analyses of biological phenomena, we should aim beyond a mechanical use of such methods and bring back intuitive insights into model functioning, by remembering that after all, modeling is an art and not simply engineering. “Getting something for nothing is impossible; there is always a price to pay.” Louis Gross.“There is not such a thing as a free lunch.”

Publisher

Frontiers Media SA

Subject

Applied Mathematics,Statistics and Probability

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3