Hot electron relaxation and energy loss rate in silicon: Temperature dependence and main scattering channels

Author:

Sen R.1ORCID,Vast N.1,Sjakste J.1ORCID

Affiliation:

1. Laboratoire des Solides Irradiés, CEA/DRF/IRAMIS, École Polytechnique, CNRS, Institut Polytechnique de Paris, 91120 Palaiseau, France

Abstract

In this work, we revisit the density functional theory (DFT)-based results for electron–phonon scattering in highly excited silicon. Using the state-of-the-art ab initio methods, we examine the main scattering channels, which contribute to the total electron–phonon scattering rate and the energy loss rate of photoexcited electrons in silicon as well as their temperature dependence. Both temperature dependence and the main scattering channels are shown to strongly differ for the total electron–phonon scattering rate and the energy loss rate of photoexcited electrons. While the total electron–phonon scattering rate increases strongly with temperature, the temperature dependence of the energy loss rate is negligible. Also, while acoustic phonons dominate the total electron–phonon scattering rate at 300 K, the main contribution to the energy loss rate comes from optical modes. In this respect, DFT-based results are found to disagree with conclusions of Fischetti et al. [Appl. Phys. Lett. 114, 222104 (2019)]. We explain the origin of this discrepancy, which is mainly due to differences in the description of the electron–phonon scattering channels associated with transverse phonons.

Funder

CEA ANCRE

Agence Nationale de la Recherche

Publisher

AIP Publishing

Subject

Physics and Astronomy (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3