Low latency optical-based mode tracking with machine learning deployed on FPGAs on a tokamak

Author:

Wei Y.1ORCID,Forelli R. F.23ORCID,Hansen C.1ORCID,Levesque J. P.1ORCID,Tran N.24ORCID,Agar J. C.5ORCID,Di Guglielmo G.46ORCID,Mauel M. E.1ORCID,Navratil G. A.1ORCID

Affiliation:

1. Department of Applied Physics and Applied Mathematics, Columbia University 1 , New York, New York 10027, USA

2. Real-time Processing Systems Division, Fermi National Accelerator Laboratory 2 , Batavia, Illinois 60510, USA

3. Department of Electrical and Computer Engineering, Lehigh University 3 , Bethlehem, Pennsylvania 18015, USA

4. Department of Electrical and Computer Engineering, Northwestern University 4 , Evanston, Illinois 60208, USA

5. Department of Mechanical Engineering and Mechanics, Drexel University 5 , Philadelphia, Pennsylvania 19104, USA

6. Microelectronics Division, Fermi National Accelerator Laboratory 6 , Batavia, Illinois 60510, USA

Abstract

Active feedback control in magnetic confinement fusion devices is desirable to mitigate plasma instabilities and enable robust operation. Optical high-speed cameras provide a powerful, non-invasive diagnostic and can be suitable for these applications. In this study, we process high-speed camera data, at rates exceeding 100 kfps, on in situ field-programmable gate array (FPGA) hardware to track magnetohydrodynamic (MHD) mode evolution and generate control signals in real time. Our system utilizes a convolutional neural network (CNN) model, which predicts the n = 1 MHD mode amplitude and phase using camera images with better accuracy than other tested non-deep-learning-based methods. By implementing this model directly within the standard FPGA readout hardware of the high-speed camera diagnostic, our mode tracking system achieves a total trigger-to-output latency of 17.6 μs and a throughput of up to 120 kfps. This study at the High Beta Tokamak-Extended Pulse (HBT-EP) experiment demonstrates an FPGA-based high-speed camera data acquisition and processing system, enabling application in real-time machine-learning-based tokamak diagnostic and control as well as potential applications in other scientific domains.

Funder

Fusion Energy Sciences

High Energy Physics

Advanced Scientific Computing Research

National Science Foundation Major Research Instrumentation Program

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3