Applications and Techniques for Fast Machine Learning in Science

Author:

Deiana Allison McCarn,Tran Nhan,Agar Joshua,Blott Michaela,Di Guglielmo Giuseppe,Duarte Javier,Harris Philip,Hauck Scott,Liu Mia,Neubauer Mark S.,Ngadiuba Jennifer,Ogrenci-Memik Seda,Pierini Maurizio,Aarrestad Thea,Bähr Steffen,Becker Jürgen,Berthold Anne-Sophie,Bonventre Richard J.,Müller Bravo Tomás E.,Diefenthaler Markus,Dong Zhen,Fritzsche Nick,Gholami Amir,Govorkova Ekaterina,Guo Dongning,Hazelwood Kyle J.,Herwig Christian,Khan Babar,Kim Sehoon,Klijnsma Thomas,Liu Yaling,Lo Kin Ho,Nguyen Tri,Pezzullo Gianantonio,Rasoulinezhad Seyedramin,Rivera Ryan A.,Scholberg Kate,Selig Justin,Sen Sougata,Strukov Dmitri,Tang William,Thais Savannah,Unger Kai Lukas,Vilalta Ricardo,von Krosigk Belina,Wang Shen,Warburton Thomas K.

Abstract

In this community review report, we discuss applications and techniques forfastmachine learning (ML) in science—the concept of integrating powerful ML methods into the real-time experimental data processing loop to accelerate scientific discovery. The material for the report builds on two workshops held by the Fast ML for Science community and covers three main areas: applications for fast ML across a number of scientific domains; techniques for training and implementing performant and resource-efficient ML algorithms; and computing architectures, platforms, and technologies for deploying these algorithms. We also present overlapping challenges across the multiple scientific domains where common solutions can be found. This community report is intended to give plenty of examples and inspiration for scientific discovery through integrated and accelerated ML solutions. This is followed by a high-level overview and organization of technical advances, including an abundance of pointers to source material, which can enable these breakthroughs.

Publisher

Frontiers Media SA

Subject

Artificial Intelligence,Information Systems,Computer Science (miscellaneous)

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3