FACTORS AFFECTING TRANSMISSION AND RECOVERY IN THE PASSIVE IRON NERVE MODEL

Author:

Lillie Ralph S.1

Affiliation:

1. From the Nela Research Laboratories, Cleveland, and the Laboratory of General Physiology, University of Chicago, Chicago.

Abstract

1. The speed of transmission of the activation wave along passive iron wires enclosed in glass tubes containing dilute (70 per cent) nitric acid increases with the conductivity (sectional area) of the column of electrolyte but at a slower rate. The speed is closely proportional to the square root of the conductivity See PDF for Equation. The reasons for this relationship are discussed and an explanation is proposed. 2. The recovery of transmissivity after the passage of an activation wave is gradual and follows a characteristic course. After an interval of partial or decremental transmission (having a high temperature coefficient and lasting several minutes at 20°), the wire recovers its power of transmitting an activation wave for an indefinite distance. In such a recovered wire the speed of transmission is at first slow and increases by degrees up to a maximum, the increase following a curve apparently of the type vt = v0 (1 – e_kt). The approximate time required to attain this maximum (corresponding to complete recovery) at the different temperatures is 15 to 20 minutes at 20°, 30 to 45 minutes at 15°, ca. 60 minutes at 10°, and 90 minutes or more at 5°. 3. The character of the curve of recovery (the curve relating speed of transmission to interval since previous activation) agrees with the assumption that the increase in speed depends on a progressive chemical change in the molecules forming the passivating film, this change involving the transformation of (relatively) nonreactive into reactive molecules and following the course of a monomolecular reaction. 4. The temperature coefficient of the speed of transmission (between 5° and 20°) is low, of the order Q10 = 1.3 to 1.6. That of the rate of recovery, on the contrary, is high (Q10 = ca. 3). The parallel to the conditions in nerve and other transmitting protoplasmic systems is pointed out and discussed. 5. Passive wires enclosed in acid-containing continuous and interrupted glass tubes immersed in a large volume of acid exhibit characteristic phenomena of distance action; under appropriate conditions the velocity of transmission of the activating influence between different areas may thus be greatly increased. Characteristic instances are cited and some possible physiological parallels are pointed out.

Publisher

Rockefeller University Press

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3