Morphogenic Modeling of Corrosion Reveals Complex Effects of Intermetallic Particles

Author:

Batista Bruno C.1,Romanovskaia Elena2ORCID,Romanovski Valentin2ORCID,Emmanuel Michael3,Burns James T.2,Ma Ji2,Kiss Istvan Z.3,Scully John R.2ORCID,Steinbock Oliver1ORCID

Affiliation:

1. Department of Chemistry and Biochemistry Florida State University Tallahassee FL 32306 USA

2. Department of Materials Science and Engineering Center for Electrochemical Science and Engineering University of Virginia Charlottesville VA 22904 USA

3. Department of Chemistry Saint Louis University 3501 Laclede Ave. St. Louis MO 63103 USA

Abstract

AbstractCorrosion processes are often discussed as stochastic events. Here, it is shown that some of these seemingly random processes are not driven by nanoscopic fluctuations but rather by the spatial distribution of micrometer‐scale heterogeneities that trigger fast reactions associated with corrosion. Using a novel excitable reaction‐diffusion model, corrosion waves traveling over the metal surface and the associated material loss are described. This resulting nonuniform corrosion penetration, seen as a height loss in modeling, exposes buried intermetallic particles, which depending on the local electrochemical state of the surface trigger or block new waves. Informed by quantitative experimental data for the Mg–Al–Zn alloy AZ31B, wave speeds, wave widths, and average material loss are accurately captured. Morphogenic mitigation based on wave‐breaking microparticles is also simulated. While AZ31B corrosion is identified as a process driven by rare‐wave events, this study predicts several other corrosion regimes that proceed via spots or patchy patterns, opening the door for new protection, design, and prediction strategies.

Funder

Defense Sciences Office, DARPA

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3