The Spheromak Tilting and How it Affects Modeling Coronal Mass Ejections

Author:

Asvestari EleannaORCID,Rindlisbacher TobiasORCID,Pomoell JensORCID,Kilpua Emilia K. J.ORCID

Abstract

Abstract Spheromak-type flux ropes are increasingly used for modeling coronal mass ejections (CMEs). Many models aim at accurately reconstructing the magnetic field topology of CMEs, considering its importance in assessing their impact on modern technology and human activities in space and on the ground. However, so far there is little discussion about how the details of the magnetic structure of a spheromak affect its evolution through the ambient field in the modeling domain and what impact this has on the accuracy of magnetic field topology predictions. If the spheromak has its axis of symmetry (geometric axis) at an angle with respect to the direction of the ambient field, then the spheromak starts rotating so that its symmetry axis finally aligns with the ambient field. When using the spheromak in space weather forecasting models, this tilting can happen already during insertion and significantly affects the results. In this paper, we highlight this issue previously not examined in the field of space weather and we estimate the angle by which the spheromak rotates under different conditions. To do this, we generated simple purely radial ambient magnetic field topologies (weak/strong, positive/negative) and inserted spheromaks with varying initial speed, tilt, and magnetic helicity sign. We employ different physical and geometric criteria to locate the magnetic center of mass and axis of symmetry of the spheromak. We confirm that spheromaks rotate in all investigated conditions and their direction and angle of rotation depend on the spheromak’s initial properties and ambient magnetic field strength and orientation.

Funder

Academy of Finland

European Union HORIZON 2020

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3