Quantifying the stellar ages of dynamically separated bulges and disks of CALIFA spiral galaxies

Author:

Jin YunpengORCID,Zhu LingORCID,Zibetti StefanoORCID,Costantin LucaORCID,van de Ven GlennORCID,Mao ShudeORCID

Abstract

We employ a recently developed population-orbit superposition technique to simultaneously fit the stellar kinematic and age maps of 82 CALIFA spiral galaxies and obtain the ages of stars in different dynamical structures. We first evaluated the capabilities of this method on CALIFA-like mock data created from the Auriga simulations. The recovered mean ages of dynamically cold, warm, and hot components match the true values well, with an observational error of up to 20% in the mock age maps. For CALIFA spiral galaxies, we find that the stellar ages of the cold, warm, and hot components all increase with the stellar mass of the galaxies, from tcold ~ 2.2 Gyr, twarm ~ 2.3 Gyr, and thot ~ 2.6 Gyr for galaxies with stellar mass M* < 1010 M, to tcold ~ 4.0 Gyr, twarm ~ 5.1 Gyr, and thot ~ 5.9 Gyr for galaxies with M* > 1011 M. About 80% of the galaxies in our sample have thot > tcold, and the mean values of thottcold also increase with stellar mass, from 0.7−0.2+0.6 Gyr in low-mass galaxies (108.9 M < M* ≤ 1010.5 M) to 1.7−0.2+0.7 Gyr in high-mass galaxies (1010.5 M < M* < 1011.3 M). The stellar age is younger in disks than in bulges, on average. This suggests that either the disks formed later and/or that they experienced a more prolonged and extensive period of star formation. Lower-mass spiral galaxies have younger bulges and younger disks, while higher-mass spiral galaxies generally have older bulges, and their disks span a wide range of ages. This is consistent with the scenario in which the bulges in more massive spirals formed earlier than those in less massive spirals.

Funder

National Natural Science Foundation of China

CAS Project for Young Scientists

Comunidad de Madrid

Spanish Ministry of Science and Innovation/State Agency of Research

European Research Council

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3