Credit Card Fraud Detection using Machine Learning and Data Science

Author:

Saxena Aarush

Abstract

Abstract: It is vital that credit card companies are able to identify fraudulent credit card transactions so that customers are not charged for items that they did not purchase. Such problems can be tackled with Data Science and its importance, along with Machine Learning, cannot be overstated. This project intends to illustrate the modelling of a data set using machine learning with Credit Card Fraud Detection. The Credit Card Fraud Detection Problem includes modelling past credit card transactions with the data of the ones that turned out to be fraud. This model is then used to recognize whether a new transaction is fraudulent or not. Our objective here is to detect 100% of the fraudulent transactions while minimizing the incorrect fraud classifications. Credit Card Fraud Detection is a typical sample of classification. In this process, we have focused on analysing and pre-processing data sets as well as the deployment of multiple anomaly detection algorithms such as Local Outlier Factor and Isolation Forest algorithm on the PCA transformed Credit Card Transaction data.

Publisher

International Journal for Research in Applied Science and Engineering Technology (IJRASET)

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Combinatorial Predictive Method for Fraud Identification to Uphold Security and Data Integrity;Advances in Business Information Systems and Analytics;2024-06-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3