A Combinatorial Predictive Method for Fraud Identification to Uphold Security and Data Integrity

Author:

Anitha A.1ORCID,Nair Anjana2,Kamaraj Balakrishnan3

Affiliation:

1. School of Computer Science Engineering and Information Systems, Vellore Institute of Technology, India

2. Vellore Institute of Technology, India

3. Madurai Medical College, India

Abstract

With the prevalence of digital transactions and customer interactions in today's industry, there has been a significant increase in demand for systems that can detect fraud. Fraud detection is the process of finding and stopping illegal or dishonest activities, usually related to money. Identifying fraudulent behavior accurately and quickly is one of the biggest issues facing the retail industry. This study focuses on the relationship between fraud detection and retail optimization in order to protect profits and improve efficiency. The study suggests a predictive analytics strategy specific to the industry by fusing contextual data, past transaction data, and customer behavior patterns in an innovative way by utilizing machine learning techniques. Retailers can improve inventory management, pricing strategies, and resource allocation by applying the insights gleaned from these models. Because of ethical concerns, this study emphasizes the use of customer data to identify fraudulent activity while maintaining confidentiality and integrity.

Publisher

IGI Global

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3