Proteomic changes in intracranial blood during human ischemic stroke

Author:

Maglinger BentonORCID,Frank Jacqueline A,McLouth Christopher J,Trout Amanda L,Roberts Jill Marie,Grupke StephenORCID,Turchan-Cholewo Jadwiga,Stowe Ann M,Fraser Justin FORCID,Pennypacker Keith R

Abstract

BackgroundSince 2015, mechanical thrombectomy has been the standard treatment for emergent large vessel occlusion ischemic stroke.ObjectiveTo investigate, using the previously published Blood and Clot Thrombectomy Registry and Collaboration (BACTRAC) protocol (clinicaltrials.gov NCT03153683), how the protein expression of a patient’s intracranial blood during ischemic stroke compares with the protein expression of their systemic arterial blood in order to better understand and treat stroke.MethodsPlasma samples from 25 subjects underwent proteomic analysis, where intracranial protein expression was compared with systemic protein levels. Data including sex, comorbidities, infarct volume, and infarct time were included for each subject.ResultsA majority of important proteins had a lower expression in intracranial blood than in systemic arterial blood. Proteins with the most significant changes in expression were: endopeptidase at −0.26 (p<0.0001), phospholipid transfer protein (PLTP) at −0.26 (p=0.0005), uromodulin (UMOD) at −0.14 (p=0.002), ficolin-2 (FCN2) at −0.46 (p=0.005), C-C motif chemokine 19 (CCL19) at −0.51 (p<0.0001), C-C motif chemokine 20 (CCL20) at −0.40 (p<0.0001), fibroblast growth factor 21 at −0.37 (p=0.0002), and C-C motif chemokine (CCL23) at −0.43 (p=0.0003).ConclusionsEvaluation of proteomic changes in the intravascular space of a cerebral infarct in progress in human subjects suggested that changes in proteins such PLTP, fetuin-B (FETUB), and FCN2 may be involved in atherosclerotic changes, and chemokines such as CCL23 are known to play a role in the Th2 autoimmune response. These data provide a scientific springboard for identifying clinically relevant biomarkers for diagnosis/prognosis, and targets for much needed neuroprotective/neuroreparative pharmacotherapies.

Funder

Center for Clinical and Translational Science, University of Kentucky

Publisher

BMJ

Subject

Neurology (clinical),General Medicine,Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3