Generalisability and performance of an OCT-based deep learning classifier for community-based and hospital-based detection of gonioscopic angle closure

Author:

Randhawa Jasmeen,Chiang Michael,Porporato Natalia,Pardeshi Anmol A,Dredge Justin,Apolo Aroca GaloORCID,Tun Tin A,Quah Joanne HuiMin,Tan Marcus,Higashita Risa,Aung Tin,Varma Rohit,Xu Benjamin YORCID

Abstract

PurposeTo assess the generalisability and performance of a deep learning classifier for automated detection of gonioscopic angle closure in anterior segment optical coherence tomography (AS-OCT) images.MethodsA convolutional neural network (CNN) model developed using data from the Chinese American Eye Study (CHES) was used to detect gonioscopic angle closure in AS-OCT images with reference gonioscopy grades provided by trained ophthalmologists. Independent test data were derived from the population-based CHES, a community-based clinic in Singapore, and a hospital-based clinic at the University of Southern California (USC). Classifier performance was evaluated with receiver operating characteristic curve and area under the receiver operating characteristic curve (AUC) metrics. Interexaminer agreement between the classifier and two human examiners at USC was calculated using Cohen’s kappa coefficients.ResultsThe classifier was tested using 640 images (311 open and 329 closed) from 127 Chinese Americans, 10 165 images (9595 open and 570 closed) from 1318 predominantly Chinese Singaporeans and 300 images (234 open and 66 closed) from 40 multiethnic USC patients. The classifier achieved similar performance in the CHES (AUC=0.917), Singapore (AUC=0.894) and USC (AUC=0.922) cohorts. Standardising the distribution of gonioscopy grades across cohorts produced similar AUC metrics (range 0.890–0.932). The agreement between the CNN classifier and two human examiners (Ҡ=0.700 and 0.704) approximated interexaminer agreement (Ҡ=0.693) in the USC cohort.ConclusionAn OCT-based deep learning classifier demonstrated consistent performance detecting gonioscopic angle closure across three independent patient populations. This automated method could aid ophthalmologists in the assessment of angle status in diverse patient populations.

Funder

Southern California Clinical and Translational Science Institute

American Glaucoma Society

Research to Prevent Blindness

Fight for Sight

National Institutes of Health

Publisher

BMJ

Subject

Cellular and Molecular Neuroscience,Sensory Systems,Ophthalmology

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3