Automated expert-level scleral spur detection and quantitative biometric analysis on the ANTERION anterior segment OCT system

Author:

Bolo KyleORCID,Apolo Aroca GaloORCID,Pardeshi Anmol A,Chiang Michael,Burkemper Bruce,Xie Xiaobin,Huang Alex S,Simonovsky Martin,Xu Benjamin YORCID

Abstract

AimTo perform an independent validation of deep learning (DL) algorithms for automated scleral spur detection and measurement of scleral spur-based biometric parameters in anterior segment optical coherence tomography (AS-OCT) images.MethodsPatients receiving routine eye care underwent AS-OCT imaging using the ANTERION OCT system (Heidelberg Engineering, Heidelberg, Germany). Scleral spur locations were marked by three human graders (reference, expert and novice) and predicted using DL algorithms developed by Heidelberg Engineering that prioritise a false positive rate <4% (FPR4) or true positive rate >95% (TPR95). Performance of human graders and DL algorithms were evaluated based on agreement of scleral spur locations and biometric measurements with the reference grader.Results1308 AS-OCT images were obtained from 117 participants. Median differences in scleral spur locations from reference locations were significantly smaller (p<0.001) for the FPR4 (52.6±48.6 µm) and TPR95 (55.5±50.6 µm) algorithms compared with the expert (61.1±65.7 µm) and novice (79.4±74.9 µm) graders. Intergrader reproducibility of biometric measurements was excellent overall for all four (intraclass correlation coefficient range 0.918–0.997). Intergrader reproducibility of the expert grader (0.567–0.965) and DL algorithms (0.746–0.979) exceeded that of the novice grader (0.146–0.929) for images with narrow angles defined by OCT measurement of angle opening distance 500 µm anterior to the scleral spur (AOD500)<150 µm.ConclusionsDL algorithms on the ANTERION approximate expert-level measurement of scleral spur-based biometric parameters in an independent patient population. These algorithms could enhance clinical utility of AS-OCT imaging, especially for evaluating patients with angle closure and performing intraocular lens calculations.

Funder

the National Eye Institute, National Institute of Health, Bethesda, Maryland

Publisher

BMJ

Subject

Cellular and Molecular Neuroscience,Sensory Systems,Ophthalmology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3