Computer-aided detection and abnormality score for the outer retinal layer in optical coherence tomography

Author:

Rim Tyler HyungtaekORCID,Lee Aaron Yuntai,Ting Daniel SORCID,Teo Kelvin Yi Chong,Yang Hee Seung,KIM Hyeonmin,Lee Geunyoung,Teo Zhen LingORCID,Teo Wei Jun AlvinORCID,Takahashi Kengo,Yoo Tea Keun,Kim Sung Eun,Yanagi Yasuo,Cheng Ching-YuORCID,Kim Sung Soo,Wong Tien YinORCID,Cheung Chui Ming GemmyORCID

Abstract

BackgroundTo develop computer-aided detection (CADe) of ORL abnormalities in the retinal pigmented epithelium, interdigitation zone and ellipsoid zone via optical coherence tomography (OCT).MethodsIn this retrospective study, healthy participants with normal ORL, and patients with abnormality of ORL including choroidal neovascularisation (CNV) or retinitis pigmentosa (RP) were included. First, an automatic segmentation deep learning (DL) algorithm, CADe, was developed for the three outer retinal layers using 120 handcraft masks of ORL. This automatic segmentation algorithm generated 4000 segmentations, which included 2000 images with normal ORL and 2000 (1000 CNV and 1000 RP) images with focal or wide defects in ORL. Second, based on the automatically generated segmentation images, a binary classifier (normal vs abnormal) was developed. Results were evaluated by area under the receiver operating characteristic curve (AUC).ResultsThe DL algorithm achieved an AUC of 0.984 (95% CI 0.976 to 0.993) for individual image evaluation in the internal test set of 797 images. In addition, performance analysis of a publicly available external test set (n=968) had an AUC of 0.957 (95% CI 0.944 to 0.970) and a second clinical external test set (n=1124) had an AUC of 0.978 (95% CI 0.970 to 0.986). Moreover, the CADe highlighted well normal parts of ORL and omitted highlights in abnormal ORLs of CNV and RP.ConclusionThe CADe can use OCT images to segment ORL and differentiate between normal ORL and abnormal ORL. The CADe classifier also performs visualisation and may aid future physician diagnosis and clinical applications.

Funder

National Eye Institute

National Medical Research Council

Publisher

BMJ

Subject

Cellular and Molecular Neuroscience,Sensory Systems,Ophthalmology

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3