Wayfinding artificial intelligence to detect clinically meaningful spots of retinal diseases: Artificial intelligence to help retina specialists in real world practice

Author:

Shiihara HidekiORCID,Sonoda Shozo,Terasaki Hiroto,Fujiwara Kazuki,Funatsu Ryoh,Shiba Yousuke,Kumagai Yoshiki,Honda Naoto,Sakamoto TaijiORCID

Abstract

Aim/background To aim of this study is to develop an artificial intelligence (AI) that aids in the thought process by providing retinal clinicians with clinically meaningful or abnormal findings rather than just a final diagnosis, i.e., a “wayfinding AI.” Methods Spectral domain optical coherence tomography B-scan images were classified into 189 normal and 111 diseased eyes. These were automatically segmented using a deep-learning based boundary-layer detection model. During segmentation, the AI model calculates the probability of the boundary surface of the layer for each A-scan. If this probability distribution is not biased toward a single point, layer detection is defined as ambiguous. This ambiguity was calculated using entropy, and a value referred to as the ambiguity index was calculated for each OCT image. The ability of the ambiguity index to classify normal and diseased images and the presence or absence of abnormalities in each layer of the retina were evaluated based on the area under the curve (AUC). A heatmap, i.e., an ambiguity-map, of each layer, that changes the color according to the ambiguity index value, was also created. Results The ambiguity index of the overall retina of the normal and disease-affected images (mean ± SD) were 1.76 ± 0.10 and 2.06 ± 0.22, respectively, with a significant difference (p < 0.05). The AUC used to distinguish normal and disease-affected images using the ambiguity index was 0.93, and was 0.588 for the internal limiting membrane boundary, 0.902 for the nerve fiber layer/ganglion cell layer boundary, 0.920 for the inner plexiform layer/inner nuclear layer boundary, 0.882 for the outer plexiform layer/outer nuclear layer boundary, 0.926 for the ellipsoid zone line, and 0.866 for the retinal pigment epithelium/Bruch’s membrane boundary. Three representative cases reveal the usefulness of an ambiguity map. Conclusions The present AI algorithm can pinpoint abnormal retinal lesions in OCT images, and its localization is known at a glance when using an ambiguity map. This will help diagnose the processes of clinicians as a wayfinding tool.

Funder

JSPS KAKENHI

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3