Identification of a novel circ_0018289/miR-183-5p/TMED5 regulatory network in cervical cancer development

Author:

Zou Heng,Chen Huijia,Liu Shuaibin,Gan Xiaoling

Abstract

Abstract Background Circular RNAs (circRNAs) are increasingly implicated in regulating human carcinogenesis. Previous work showed the oncogenic activity of circ_0018289 in cervical cancer. However, the molecular basis underlying the modulation of circ_0018289 in cervical carcinogenesis is still not fully understood. Methods The levels of circ_0018289, microRNA (miR)-183-5p, and transmembrane p24 trafficking protein 5 (TMED5) were measured by quantitative real-time polymerase chain reaction (qRT-PCR) or western blot assay. Ribonuclease (RNase) R and subcellular localization assays were used to characterize circ_0018289. Cell proliferation was detected by the Cell Counting Kit-8 (CCK-8) and 5-ethynyl-2′-deoxyuridine (Edu) assays. Cell apoptosis and tube formation were assessed by flow cytometry and tube formation assays, respectively. A dual-luciferase reporter assay was performed to confirm the direct relationship between miR-183-5p and circ_0018289 or TMED5. The role of circ_0018289 in tumor growth was gauged by mouse xenograft experiments. Results Circ_0018289 was overexpressed in cervical cancer tissues and cells. Circ_0018289 silencing impeded cell proliferation, enhanced cell apoptosis, and suppressed angiogenesis in vitro, as well as diminished tumor growth in vivo. Mechanistically, circ_0018289 targeted and regulated miR-183-5p by binding to miR-183-5p, and circ_0018289 regulated cervical cancer development and angiogenesis partially through miR-183-5p. Moreover, TMED5 was directly targeted and inhibited by miR-183-5p through the perfect complementary sites in TMED5 3′UTR, and TMED5 knockdown phenocopied miR-183-5p overexpression in suppressing cervical cancer development and angiogenesis. Furthermore, circ_0018289 induced TMED5 expression by competitively binding to shared miR-183-5p. Conclusion Our observations identified the circ_0018289/miR-183-5p/TMED5 regulatory network as a novel molecular basis underlying the modulation of cervical carcinogenesis.

Publisher

Springer Science and Business Media LLC

Subject

Oncology,Surgery

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3