Reprogramming tumor microenvironment via dual targeting co-delivery of regorafenib and alpha-difluoromethylornithine in osteosarcoma

Author:

Wang Hongsheng,Jin Xinmeng,Gao Yinghua,He Xin,Xu Yiming,Mu Haoran,Jiang Yafei,Wang Zhuoying,Yu Chen,Zhang Tao,Hua Yingqi,Cai Zhengdong,Xu Jing,Ma Xiaojun,Sun Wei

Abstract

Abstract Background Tumor angiogenesis, immunosuppression, and progression are all closely correlated with the tumor microenvironment (TME). Immune evasion is supported by both M2 phenotype tumor-associated macrophages (TAMs) and vascular aberrations in the TME. TME reprogramming is a promising therapeutic approach for treating tumors. Anti-angiogenesis has the power to control the polarization of macrophages, prevent progression, and increase drug penetration. Additionally, polyamine blocking therapy can increase CD8+ T cell infiltration and decrease immunosuppressive cells. These results led to developing a potential therapeutic regimen that targets TAMs and angiogenesis to reprogram the osteosarcoma TME. Results For the targeted biomimetic co-delivery of regorafenib and alpha-difluoromethylornithine via the mannose receptor, which is overexpressed in both TAMs and osteosarcoma cells, mannosylated poly(lactide-co-glycolide)-polyethylene glycol nanoparticles (Man-NPs) were synthesized. The superior physiological properties and intratumoral accumulation of the Man-NPs efficiently promoted TAMs polarization and inhibited angiogenesis. Macrophage repolarization further activated immune cells, which contributed to remodeling the TME. Conclusion Overall, these findings suggested that using Man-NPs as an immunotherapeutic approach to treat osteosarcoma may be promising. Graphical Abstract

Funder

National Natural Science Foundation of China

Shanghai Jiaotong University

Shanghai Pujiang Program

Songjiang District Science and Technology Innovation Fund

Shanghai Rising-Star Program

Publisher

Springer Science and Business Media LLC

Subject

Physical and Theoretical Chemistry,Pharmaceutical Science,Oncology,Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3