The Role of Tumor Associated Macrophages (TAMs) in Cancer Progression, Chemoresistance, Angiogenesis and Metastasis - Current Status

Author:

Dallavalasa Siva1,Beeraka Narasimha M.1,Basavaraju Chaithanya G.1,Tulimilli SubbaRao V.1,Sadhu Surya Prabha2,Rajesh Konathala3,Aliev Gjumrakch4,Madhunapantula SubbaRao V.1

Affiliation:

1. Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR), Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru 570015, Karnataka, India

2. AU College of Pharmaceutical Sciences, Andhra University, Visakhapatnam 530003, Andhra Pradesh, India

3. Kakinada Institute of Technological Sciences (KITS), Ramachandrapuram 533255, East Godavari District, Andhra Pradesh, India

4. Sechenov First Moscow State Medical University (Sechenov University), St. Trubetskaya, 8, bld. 2, Moscow 119991, Russian Federation

Abstract

Tumor associated macrophages (TAMs), located in the tumor microenvironment (TME), play a significant role in cancer cell survival and progression. TAMs have been involved in producing immuno-suppressive TME in the tumor by generating inflammatory mediators, growth factors, cytokines, chemokines, etc. TAMs can influence the angiogenesis, metastatic behavior of tumor cells (TCs) and cause multidrug resistance. TAMs within the TME can enhance cancer cell metastasis and are stromal and perivascular. The angiogenesis is promoted at the hypoxia, and the avascular zones of TME. Differentiation states of TAMs are considered ‘plastic’ as they exhibit temporal expression of one or several phenotypes depending on local cues. Emerging cancer research depicted the epigenetic regulation of macrophage polarization (both M1s, M2s) and their potential implications to develop pharmacologic modulators and microRNAs to act as molecular switches and even to serve as targeted therapies to inhibit tumor growth. In the present article, the role of TAMs in tumor progression, angiogenesis and metastasis was discussed. In addition, key signaling cascades regulated by TAMs, which have a role in chemoresistance, were also discussed. Currently, novel pleiotropic properties of various anticancer phytomedicines are gaining importance as they assist in overcoming TAMs-induced chemoresistance. Moreover, these phytomedicines are being tested as ‘adjunct therapeutics’ along with chemotherapeutic agents, anti-angiogenic molecules, anti-metastatic compounds, and other immune-checkpoint blockers against tumor metastasis/angiogenesis. Hence, a brief note on natural products targeting TAMs was provided. In summary, this review would benefit pharmacologists and medical professionals to develop therapies to target TAMs using multi-OMICs approaches, including genomics, epigenomics, transcriptomics, and proteomics.

Funder

Department of Science and Technology Fund for Improvement of S&T infrastructure in Universities & Higher educational institutions

Department of Biotechnology

Publisher

Bentham Science Publishers Ltd.

Subject

Pharmacology,Molecular Medicine,Drug Discovery,Biochemistry,Organic Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3