Interaction between position sense and force control in bimanual tasks

Author:

Ballardini GiuliaORCID,Ponassi Valentina,Galofaro Elisa,Carlini Giorgio,Marini Francesca,Pellegrino Laura,Morasso Pietro,Casadio Maura

Abstract

Abstract Background Several daily living activities require people to coordinate the motion and the force produced by both arms, using their position sense and sense of effort. However, to date, the interaction in bimanual tasks has not been extensively investigated. Methods We focused on bimanual tasks where subjects were required: (Experiment 1) to move their hands until reaching the same position – equal hand position implied identical arm configurations in joint space - under different loading conditions;(Experiment 2) to produce the same amount of isometric force by pushing upward, with their hands placed in symmetric or asymmetric positions. The arm motions and forces required for accomplishing these tasks were in the vertical direction. We enrolled a healthy population of 20 subjects for Experiment 1 and 25 for Experiment 2. Our primary outcome was the systematic difference between the two hands at the end of each trial in terms of position for Experiment 1 and force for Experiment 2. In both experiments using repeated measure ANOVA we evaluated the effect of each specific condition, namely loading in the former case and hand configuration in the latter. Results In the first experiment, the difference between the hands’ positions was greater when they were concurrently loaded with different weights. Conversely, in the second experiment, when subjects were asked to exert equal forces with both arms, the systematic difference between left and right force was not influenced by symmetric or asymmetric arm configurations, but by the position of the left hand, regardless of the right hand position. The performance was better when the left hand was in the higher position. Conclusions The experiments report the reciprocal interaction between position sense and sense of effort inbimanual tasks performed by healthy subjects. Apart for the intrinsic interest for a better understanding of basic sensorimotor processes, the results are also relevant to clinical applications, for defining functional evaluation and rehabilitative protocols for people with neurological diseases or conditions that impair the ability to sense and control concurrently position and force.

Funder

FP7 People: Marie-Curie Actions

Ministry of Science and Technology, Israel

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Rehabilitation

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An EMG-Based Biomimetic Variable Stiffness Modulation Strategy for Bilateral Motor Skills Relearning of Upper Limb Elbow Joint Rehabilitation;Journal of Bionic Engineering;2023-02-06

2. How virtual and mechanical coupling impact bimanual tracking;Journal of Neurophysiology;2023-01-01

3. Bimanual Isometric Force Control in Young and Older Adults;2022-11-08

4. Is a robot needed to modify human effort in bimanual tracking?;2022 9th IEEE RAS/EMBS International Conference for Biomedical Robotics and Biomechatronics (BioRob);2022-08-21

5. Is a Robot Needed to Modify Human Effort in Bimanual Tracking?;IEEE Robotics and Automation Letters;2022-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3