The Role of the Corpus Callosum in the Coupling of Bimanual Isometric Force Pulses

Author:

Diedrichsen Jörn12,Hazeltine Eliot3,Nurss Wesley K.1,Ivry Richard B.14

Affiliation:

1. Department of Psychology, University of California, Berkeley, California 94720-5800

2. Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21205-2195

3. National Aeronautics and Space Administration Ames Research Center, Moffett Field 94035

4. Helen Wills Neuroscience Institute, University of California, Berkeley, California 94720-5800

Abstract

Two split-brain patients, a patient with callosal agenesis, and 6 age-matched control participants were tested on a bimanual force production task. The participants produced isometric responses with their index fingers, attempting to match the target force specified by a visual stimulus. On unimanual trials, the stimuli were presented in either the left or right visual field and the response was made with the ipsilateral hand. On bimanual trials, two stimuli were presented, one on each side, and the target forces could be either identical or different. Bimanual responses of the control subjects showed strong evidence of coupling. Forces produced by one hand were influenced by the forces produced by the other hand with positive correlations observed for all target force combinations. These assimilation effects and correlations were greatly attenuated in the acallosal group, with similar results observed for the split-brain patients and participant with callosal agenesis. Furthermore, the processes involved in selecting and planning the two responses occurred independently in the acallosal group; in contrast to the controls, the three acallosal participants exhibited no differences in reaction times or accuracy between bimanual trials in which the two target forces were the same or different. We also found a striking temporal desynchronization of the responses in the split-brain patients, indicating that in this context, temporal coupling is impaired after callosotomy. These results are congruent with the hypothesis that interference related to response selection and planning of bimanual force pulses arises from callosal interactions.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 71 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3