Genetic variants modulate gene expression statin response in human lymphoblastoid cell lines

Author:

Theusch Elizabeth,Chen Yii-Der I.,Rotter Jerome I.,Krauss Ronald M.,Medina Marisa W.ORCID

Abstract

Abstract Background Statins are widely prescribed to lower plasma low-density lipoprotein cholesterol levels. Though statins reduce cardiovascular disease risk overall, statin efficacy varies, and some people experience adverse side effects while on statin treatment. Statins also have pleiotropic effects not directly related to their cholesterol-lowering properties, but the mechanisms are not well understood. To identify potential genetic modulators of clinical statin response, we looked for genetic variants associated with statin-induced changes in gene expression (differential eQTLs or deQTLs) in lymphoblastoid cell lines (LCLs) derived from participants of the Cholesterol and Pharmacogenetics (CAP) 40 mg/day 6-week simvastatin clinical trial. We exposed CAP LCLs to 2 μM simvastatin or control buffer for 24 h and performed polyA-selected, strand-specific RNA-seq. Statin-induced changes in gene expression from 259 European ancestry or 153 African American ancestry LCLs were adjusted for potential confounders prior to association with genotyped and imputed genetic variants within 1 Mb of each gene’s transcription start site. Results From the deQTL meta-analysis of the two ancestral populations, we identified significant cis-deQTLs for 15 genes (TBC1D4, MDGA1, CHI3L2, OAS1, GATM, ASNSD1, GLUL, TDRD12, PPIP5K2, OAS3, SERPINB1, ANKDD1A, DTD1, CYFIP2, and GSDME), eight of which were significant in at least one of the ancestry subsets alone. We also conducted eQTL analyses of the endogenous (control-treated), statin-treated, and average of endogenous and statin-treated LCL gene expression levels. We identified eQTLs for approximately 6000 genes in each of the three (endogenous, statin-treated, and average) eQTL meta-analyses, with smaller numbers identified in the ancestral subsets alone. Conclusions Several of the genes in which we identified deQTLs have functions in human health and disease, such as defense from viruses, glucose regulation, and response to chemotherapy drugs. This suggests that DNA variation may play a role in statin effects on various health outcomes. These findings could prove useful to future studies aiming to assess benefit versus risk of statin treatment using individual genetic profiles.

Funder

National Heart, Lung, and Blood Institute

American Heart Association

National Institute of General Medical Sciences

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Biotechnology

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3