A completeness-independent method for pre-selection of closely related genomes for species delineation in prokaryotes

Author:

Zhou YizhuangORCID,Zheng Jifang,Wu Yepeng,Zhang Wenting,Jin Junfei

Abstract

Abstract Background Whole-genome approaches are widely preferred for species delineation in prokaryotes. However, these methods require pairwise alignments and calculations at the whole-genome level and thus are computationally intensive. To address this problem, a strategy consisting of sieving (pre-selecting closely related genomes) followed by alignment and calculation has been proposed. Results Here, we initially test a published approach called “genome-wide tetranucleotide frequency correlation coefficient” (TETRA), which is specially tailored for sieving. Our results show that sieving by TETRA requires > 40% completeness for both genomes of a pair to yield > 95% sensitivity, indicating that TETRA is completeness-dependent. Accordingly, we develop a novel algorithm called “fragment tetranucleotide frequency correlation coefficient” (FRAGTE), which uses fragments rather than whole genomes for sieving. Our results show that FRAGTE achieves ~ 100% sensitivity and high specificity on simulated genomes, real genomes and metagenome-assembled genomes, demonstrating that FRAGTE is completeness-independent. Additionally, FRAGTE sieved a reduced number of total genomes for subsequent alignment and calculation to greatly improve computational efficiency for the process after sieving. Aside from this computational improvement, FRAGTE also reduces the computational cost for the sieving process. Consequently, FRAGTE extremely improves run efficiency for both the processes of sieving and after sieving (subsequent alignment and calculation) to together accelerate genome-wide species delineation. Conclusions FRAGTE is a completeness-independent algorithm for sieving. Due to its high sensitivity, high specificity, highly reduced number of sieved genomes and highly improved runtime, FRAGTE will be helpful for whole-genome approaches to facilitate taxonomic studies in prokaryotes.

Funder

Natural Science Foundation of Guangxi Province

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3