Skip to main content
Log in

Practical synthesis of tetrahydrofolate by highly efficient catalytic hydrogenation in continuous flow

  • Full Paper
  • Published:
Journal of Flow Chemistry Aims and scope Submit manuscript

Abstract

Hundred-gram scale of highly selective catalytic hydrogenation of folic acid has been developed, which is adopted continuous-flow technology with Raney Ni as a catalyst. Through optimization of the reaction condition, a high conversion rate of folic acid (> 99%) and a high selectivity (99%) of tetrahydrofolate have been achieved. Additionally, a high-purity calcium-6S-5-methyltetrahydrofolate (6S-5-MTHF.Ca) has been synthesized from tetrahydrofolate obtained by continuous hydrogenation through chiral resolution, methylation, salting and recrystallization (purity: 99.5%, de: 97.6%). Compared to known methods, this method provides a feasible procedure using simple, inexpensive, and readily available reagents, making it a step-economical and cost-effective alternative strategy for production of tetrahydrofolate and its active derivatives.

Graphical Abstract

For Table of Contents Only

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Scheme 2

Similar content being viewed by others

Data Availability

The authors confirm that the data supporting the findings of this study are available within the article.

References

  1. Ownby DR (2009) J Allergy Clin Immunol 123:1260–1261

    Article  PubMed  Google Scholar 

  2. Blancquaert D, Van Daele J, Strobbe S, Kiekens F, Storozhenko S, De Steur H, Gellynck X, Lambert W, Van Der Stove C (2015) Nat Biotechnol 33:1076–1078

    Article  CAS  PubMed  Google Scholar 

  3. Ghalkhani M, Shahrokhian S (2016) CNANO 12:493–499

    Article  CAS  ADS  Google Scholar 

  4. Ratajczak AE, Szymczak-Tomczak A, Rychter AM, Zawada A, Dobrowolska A, Krela-Kaźmierczak I (2021) Nutrients 13:4036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ferrazzi E, Tiso G, Di Martino D (2020) Eur J Obstet Gynecol Reprod Biol 253:312–319

    Article  CAS  PubMed  Google Scholar 

  6. Li J, Wang Y, Shan L, Qian L, Wang W, Tang LJJ (2023) Molecules 28:5228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Off MK, Steindal AE, Porojnicu AC, Juzeniene A, Vorobey A, Johnsson A, Moan J (2005) J Photochem Photobiol B 80:47–55

    Article  CAS  PubMed  Google Scholar 

  8. Strandler HS, Patring J, Jägerstad M, Jastrebova J (2015) J Agric Food Chem 63:2367–2377

    Article  CAS  PubMed  Google Scholar 

  9. Nelson BC, Pfeiffer CM, Margolis SA, Nelson CP (2003) Anal Biochem 313:117–127

    Article  CAS  PubMed  Google Scholar 

  10. Lucock M (2000) Mol Genet Metab 71:121–138

    Article  CAS  PubMed  Google Scholar 

  11. Scaglione F (2014) Panzavolta Xenobiotica 44:480–488

    Article  CAS  PubMed  Google Scholar 

  12. Ames BN (1999) Ann New York Acad Sci 889:87–106

    Article  CAS  ADS  Google Scholar 

  13. Marcon F, Carotti D, Andreoli C, Siniscalchi E, Leopardi P, Caiola S, Biffoni M, Zijno A, Medda E, Nisticò L, Rossi S, Crebelli R (2013) Mutagenesis 28:135–144

    Article  CAS  PubMed  Google Scholar 

  14. Huo Y, Li J, Qin X, Huang Y, Wang X, Gottesman RF, Tang G, Wang B, Chen D, He M, Fu J, Cai Y, Shi X, Zhang Y, Cui Y, Sun N, Li X, Cheng X, Wang J, Yang X, Yang T, Xiao C, Zhao G, Dong Q, Zhu D, Wang X, Ge J, Zhao L, Hu D, Liu L, Hou FF (2015) JAMA-J Am Med Assoc 313:1325–1335

    Article  CAS  Google Scholar 

  15. Wu S, Wu B, Liu M, Chen Z, Wang W, Anderson CS, Sandercock P, Wang Y, Huang Y, Cui L, Pu C, Jia J, Zhang T, Liu X, Zhang S, Xie P, Fan D, Ji X, Wong K-SL, Wang L, Wu S, Wu B, Liu M, Chen Z, Wang W, Anderson CS, Sandercock P, Wang Y, Huang Y, Cui L, Pu C, Jia J, Zhang T, Liu X, Zhang S, Xie P, Fan D, Ji X, Wong K-SL, Wang L, Wei C, Wang Y, Cheng Y, Liu Y, Li X, Dong Q, Zeng J, Peng B, Xu Y, Yang Y, Wang Y, Zhao G, Wang W, Xu Y, Yang Q, He Z, Wang S, You C, Gao Y, Zhou D, He L, Li Z, Yang J, Lei C, Zhao Y, Liu J, Zhang S, Tao W, Hao Z, Wang D, Zhang S (2019) Lancet Neurol 18:394–405

    Article  PubMed  Google Scholar 

  16. Yusuf S, Lonn E, Pais P, Bosch J, López-Jaramillo P, Zhu J, Xavier D, Avezum A, Leiter LA, Piegas LS, Parkhomenko A, Keltai M, Keltai K, Sliwa K, Chazova I, Peters RJG, Held C, Yusoff K, Lewis BS, Jansky P, Khunti K, Toff WD, Reid CM, Varigos J, Accini JL, McKelvie R, Pogue J, Jung H, Liu L, Diaz R, Dans A, Dagenais G (2016) N Engl J Med 374:2032–2043

    Article  CAS  PubMed  Google Scholar 

  17. Korai M, Kitazato KT, Tada Y, Miyamoto T, Shimada K, Matsushita N, Kanematsu Y, Satomi J, Hashimoto T, Nagahiro S (2016) J Neuroinflammation 13:165

    Article  PubMed  PubMed Central  Google Scholar 

  18. Liu X, Tong X, Zou Y, Lin X, Zhao H, Tian L, Jie Z, Wang Q, Zhang Z, Lu H, Xiao L, Qiu X, Zi J, Wang R, Xu X, Yang H, Wang J, Zong Y, Liu W, Hou Y, Zhu S, Jia H, Zhang T (2022) Nat Genet 54:52–61

    Article  CAS  PubMed  Google Scholar 

  19. Berry RJ, Li Z, Erickson JD, Li S, Moore CA, Wang H, Mulinare J, Zhao P, Wong L-YC, Gindler J, Hong S-X, Hao L, Gunter E, Correa A (1999) N Engl J Med 341:1485–1490

    Article  CAS  PubMed  Google Scholar 

  20. Gernand AD, Schulze KJ, Stewart CP, West KP, Christian P (2016) Nat Rev Endocrinol 12:274–289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Mousa A, Naqash A, Lim S (2019) Nutrients 11:443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yadav MK, Manoli NM, Madhunapantula SV (2016) PLoS ONE 11:e0164559

    Article  PubMed  PubMed Central  Google Scholar 

  23. Yadav MK, Manoli NM, Vimalraj S (2018) Madhunapantula Int J Biol Macromol 109:76–84

    Article  CAS  PubMed  Google Scholar 

  24. Hasan T, Arora R, Bansal AK, Bhattacharya R, Sharma GS, Singh LR (2019) Exp Mol Med 51:1–13

    Article  PubMed  Google Scholar 

  25. Czeizel A (1995) Curr Opin Obstet Gynecol 7:88–94

    Article  CAS  PubMed  Google Scholar 

  26. Wehby G, Félix T, Goco N, Richieri-Costa A, Chakraborty H, Souza J, Pereira R, Padovani C, Moretti-Ferreira D, Murray J (2013) IJERPH 10:590–605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sarris J, Murphy J, Mischoulon D, Papakostas GI, Fava M, Berk M, Ng CH (2016) AJP 173:575–587

    Article  Google Scholar 

  28. Zhou Y, Cong Y, Liu H (2020) BMC Neurosci 21:1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Gupta VS, Huennekens FM (1967) Arch Biochem Biophys 120:712–718

    Article  CAS  Google Scholar 

  30. Blair JA, Saunders KJ (1970) Anal Biochem 34:376–381

    Article  CAS  PubMed  Google Scholar 

  31. Zhou M, Hong M, Xiao G (2013) Res Chem Intermed 39:2211–2218

    Article  CAS  Google Scholar 

  32. Loveridge EJ, Behiry EM, Guo J, Allemann RK (2012) Nat Chem 4:292–297

    Article  CAS  PubMed  Google Scholar 

  33. Loveridge EJ, Hroch L, Hughes RL, Williams T, Davies RL, Angelastro A, Luk LYP, Maglia G, Allemann RK (2017) Biochemistry 56:1879–1886

    Article  CAS  PubMed  Google Scholar 

  34. Cao H, Gao M, Zhou H, Skolnick J (2018) Commun Biol 1:226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Brunner H, Rosenboem S (2000) Monatsh Chem 131:1371–1382

    Article  CAS  Google Scholar 

  36. Pugin B, Groehn V, Moser R, Blaser H-U (2006) Tetrahedron Asymmetry 17:544–549

    Article  CAS  Google Scholar 

  37. Fujita Y, Hata T, Nakamaru M, Iyo T, Yoshino T, Shimamura T (2005) Bioresour Technol 96:1350–1356

    Article  CAS  PubMed  Google Scholar 

  38. See AS, Salleh AB, Bakar FA, Yusof NA, Abdulamir AS, Lee YH (2010) Am J Appl Sci 7:620–627

    Article  CAS  Google Scholar 

  39. Blaga AC, Dragoi EN, Tucaliuc A, Kloetzer L, Cascaval D (2023) Molecules 28:3339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Cantillo D, Moghaddam MM, Kappe CO (2013) J Org Chem 78:4530–4542

    Article  CAS  PubMed  Google Scholar 

  41. Yang C, Teixeira AR, Shi Y, Born SC, Lin H, Li Song Y, Martin B, Schenkel B, Peer Lachegurabi M, Jensen KF (2018) Green Chem 20:886–893

    Article  CAS  Google Scholar 

  42. Toh RW, Patrzałek M, Nienałtowski T, Piątkowski J, Kajetanowicz A, Wu J, Grela K (2021) ACS Sustain Chem Eng 9:16450–16458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Guan F, Blacker AJ, Hall B, Kapur N, Wen J, Zhang X (2021) J Flow Chem 11:763–772

    Article  CAS  Google Scholar 

  44. Liu C, Xie J, Wu W, Wang M, Chen W, Idres SB, Rong J, Deng L-W, Khan SA, Wu J (2021) Nat Chem 13:451–457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zou P, Wang K, Luo G (2022) Front Chem Sci Eng 16:1818–1825

    Article  CAS  Google Scholar 

  46. Gérardy R, Nambiar AMK, Hart T, Mahesh PT, Jensen KF (2022) Chem Eur J 28:e202201385

    Article  PubMed  Google Scholar 

  47. Yan Z, Du C, Wang Y, Deng J, Luo G (2022) Chem Eng J 444:136498

    Article  CAS  Google Scholar 

  48. Guan F, Qian Y, Zhang P, Zhang R, Zhang X, Wen J (2023) Angew Chem Int Ed 62:e202302777

    Article  CAS  Google Scholar 

  49. Tsubogo T, Oyamada H, Kobayashi S (2015) Nature 520:329–332

    Article  CAS  PubMed  ADS  Google Scholar 

  50. Adamo A, Beingessner RL, Behnam M, Chen J, Jamison TF, Jensen KF, Monbaliu J-CM, Myerson AS, Revalor EM, Snead DR, Stelzer T, Weeranoppanant N, Wong SY, Zhang P (2016) Science 352:61–67

    Article  CAS  PubMed  ADS  Google Scholar 

  51. Britton J, Raston CL (2017) Chem Soc Rev 46:1250–1271

    Article  CAS  PubMed  Google Scholar 

  52. Said MB, Baramov T, Herrmann T, Gottfried M, Hassfeld J, Roggan S (2017) Org Process Res Dev 21:705–714

    Article  CAS  Google Scholar 

  53. Duan X, Yin J, Feng A, Huang M, Fu W, Xu W, Huang Z, Zhang J (2022) J Flow Chem 2022(12):121–129

    Article  Google Scholar 

  54. Porcar R, Mollar-Cuni A, Ventura-Espinosa D, Luis SV, García-Verdugo E, Mata JA (2022) Green Chem 24:2036–2043

    Article  CAS  Google Scholar 

  55. Masson E, Maciejewski EM, Wheelhouse KMP, Edwards LJ (2022) Org. Process Res Dev 26:2190–2223

    Article  CAS  Google Scholar 

  56. Deraedt C, Ye R, Ralston WT, Toste FD, Somorjai GA (2017) J Am Chem Soc 139:18084–18092

    Article  CAS  PubMed  Google Scholar 

  57. Li K, Hao B, Xiao M, Kuang Y, Shang H, Ma J, Liao Y, Mao H (2019) Appl Surf Sci 478:176–182

    Article  CAS  ADS  Google Scholar 

  58. Papa V, Cao Y, Spannenberg A, Junge K, Beller M (2020) Nat Catal 3:135–142

    Article  CAS  Google Scholar 

  59. Wang Y, Zhu L, Shao Z, Li G, Lan Y, Liu Q (2019) J Am Chem Soc 141:17337–17349

    Article  CAS  PubMed  Google Scholar 

  60. Murugesan K, Chandrashekhar VG, Kreyenschulte C, Beller M, Jagadeesh RV (2020) Angew Chem Int Ed 59:17408–17412

    Article  CAS  Google Scholar 

  61. Cavagnol JC, Wiselogle FY (1947) J Am Chem Soc 69:795–799

    Article  CAS  PubMed  Google Scholar 

  62. Mao S, Ryabchuk P, Dastgir S, Anwar M, Junge K, Beller M (2022) ACS Appl Nano Mater 5:5625–5630

    Article  CAS  Google Scholar 

  63. Gao J, Zhang F, Gan W, Gui Y, Qiu H, Li H, Yuan Q (2020) ACS Appl Mater Interfaces 12:47667–47676

    Article  CAS  PubMed  Google Scholar 

  64. Gao J, Zhou X, Wang Y, Chen Y, Xu Z, Qiu Y, Yuan Q, Lin X, Qiu H (2022) Small 18:2202071

    Article  CAS  Google Scholar 

  65. Gao J, Hu Y, Wang Y, Lin X, Hu K, Lin X, Xie G, Liu X, Reddy KM, Yuan Q, Qiu H (2021) Small 17:2104684

    Article  CAS  Google Scholar 

  66. Tadepalli S, Halder R, Lawal A (2007) Chem Eng Sci 62:2663–2678

    Article  CAS  Google Scholar 

  67. Králik M, Gašparovičová D, Turáková M, Vallušová Z, Balko J, Major P, Kučera M, Puliš P, Milkovič O (2019) Chem Pap 73:397–414

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the supports of Shenzhen Science and Technology Research Fund (No. JSGG20201103153807021; KCXFZ20230731094904009; GXWD20220811173736002), Natural Science Foundation of Guangdong Province (No.2021A1515110366), National Natural Science Foundation of China (No. 22302048; No. 82204231) and Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research on this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hengzhi You or Fen-Er Chen.

Ethics declarations

Competing interests

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

The Supporting Information is available free of charge at Experimental procedures for other compounds and copies of 1H NMR for all compounds, HPLC of 6S-5-methyltetrahydrofolate and calcium-6S-5-methyltetrahydrofolate, and the selectivity tetrahydrofolate and dihydrofolate.

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pang, H., Huang, J., Wang, J. et al. Practical synthesis of tetrahydrofolate by highly efficient catalytic hydrogenation in continuous flow. J Flow Chem (2024). https://doi.org/10.1007/s41981-024-00310-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41981-024-00310-7

Keywords

Navigation