High throughput sequencing of whole transcriptome and construct of ceRNA regulatory network in RD cells infected with enterovirus D68

Author:

Si Junzhuo,Tang Xia,Xu Lei,Fu Huichao,Li Huayi,He Yonglin,Bao Jiajia,Tang Jialing,Li Anlong,Lu Nan,Yang ChunORCID

Abstract

Abstract Background With the advancement of sequencing technologies, a plethora of noncoding RNA (ncRNA) species have been widely discovered, including microRNAs (miRNAs), circular RNAs (circRNAs), and long ncRNAs (lncRNAs). However, the mechanism of these non-coding RNAs in diseases caused by enterovirus d68 (EV-D68) remains unclear. The goal of this research was to identify significantly altered circRNAs, lncRNAs, miRNAs, and mRNAs pathways in RD cells infected with EV-D68, analyze their target relationships, demonstrate the competing endogenous RNA (ceRNA) regulatory network, and evaluate their biological functions. Methods The total RNAs were sequenced by high-throughput sequencing technology, and differentially expressed genes between control and infection groups were screened using bioinformatics method. We discovered the targeting relationship between three ncRNAs and mRNA using bioinformatics methods, and then built a ceRNA regulatory network centered on miRNA. The biological functions of differentially expressed mRNAs (DEmRNAs) were discovered through GO and KEGG enrichment analysis. Create a protein interaction network (PPI) to seek for hub mRNAs and learn more about protein–protein interactions. The relative expression was verified using RT-qPCR. The effects of Fos and ARRDC3 on virus replication were confirmed using RT-qPCR, virus titer (TCID50/ml), Western blotting. Results 375 lncRNAs (154 upregulated and 221 downregulated), 33 circRNAs (32 upregulated and 1 downregulated), 96 miRNAs (49 upregulated and 47 downregulated), and 239 mRNAs (135 upregulated and 104 downregulated) were identified as differently in infected group compare to no-infected group. A single lncRNA or circRNA can be connected with numerous miRNAs, which subsequently coregulate additional mRNAs, according to the ceRNA regulatory network. The majority of DEmRNAs were shown to be connected to DNA binding, transcription regulation by RNA polymerase II, transcription factor, MAPK signaling pathways, Hippo signal pathway, and apoptosis pathway, according to GO and KEGG pathway enrichment analysis. The hub mRNAs with EGR1, Fos and Jun as the core were screened through PPI interaction network. We preliminarily demonstrated that the Fos and ARRDC3 genes can suppress EV-D68 viral replication in order to further verify the results of full transcriptome sequencing. Conclusion The results of whole transcriptome analysis after EV-D68 infection of RD cells were first reported in this study, and for the first time, a ceRNA regulation network containing miRNA at its center was established for the first time. The Fos and ARRDC3 genes were found to hinder viral in RD cells. This study establishes a novel insight host response during EV-D68 infection and further investigated potential drug targets.

Funder

natural science foundation of chongqing

Publisher

Springer Science and Business Media LLC

Subject

Infectious Diseases,Virology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3