Dissecting the role of novel EZH2 inhibitors in primary glioblastoma cell cultures: effects on proliferation, epithelial-mesenchymal transition, migration, and on the pro-inflammatory phenotype

Author:

Stazi Giulia,Taglieri Ludovica,Nicolai Alice,Romanelli Annalisa,Fioravanti Rossella,Morrone Stefania,Sabatino Manuela,Ragno Rino,Taurone Samanta,Nebbioso Marcella,Carletti Raffaella,Artico Marco,Valente Sergio,Scarpa Susanna,Mai AntonelloORCID

Abstract

Abstract Background Glioblastoma (GBM) is the most lethal and aggressive malignant primary brain tumor in adults. After surgical resection of the tumor, the patient typically should be subjected to chemotherapy (temozolomide, TMZ) and concomitant radiotherapy. Since the TMZ treatment does not lead to complete remission and often develops resistance, the identification of efficacious therapeutics is strongly to pursue. Among the epigenetic players, the H3K27 methyltransferase (MT) EZH2 (enhancer of zeste homologue 2) has been found overexpressed or mutated in several human cancers including gliomas, and its overexpression is associated with poor outcome in GBM. Two EZH2 inhibitors (EZH2i), UNC1999 and GSK343, suppressed GBM growth in vitro and in vivo indicating that EZH2i can be potential drugs against GBM. Results Two new EZH2i, MC4040 and MC4041, were designed, prepared, and tested by us to determine their effects in primary GBM cell cultures. MC4040 and MC4041 displayed single-digit micromolar inhibition of EZH2, 10-fold less potency against EZH1, and no activity towards other MTs. In primary GBM cells as well as in U-87 GBM cells, the two compounds reduced H3K27me3 levels, and dose- and time-dependently impaired GBM cell viability without inducing apoptosis and arresting the cell cycle in the G0/G1 phase, with increased p21 and p27 levels. In combination with TMZ, MC4040 and MC4041 displayed stronger, but not additive, effects on cell viability. The potent clinical candidate as EZH2i tazemetostat, alone or in combination with TMZ, exhibited a similar potency of inhibition of GBM cell growth when compared to MC4040 and MC4041. At the molecular level, MC4040 and MC4041 reduced the VEGFR1/VEGF expression, reversed the epithelial-mesenchymal transition (EMT), and hampered cell migration and invasion attenuating the cancer malignant phenotype. Treatment of GBM cells with MC4040 and MC4041 also impaired the GBM pro-inflammatory phenotype, with a significant decrease of TGF-β, TNF-α, and IL-6, joined to an increase of the anti-inflammatory cytokine IL-10. Conclusions The two novel EZH2i MC4040 and MC4041 impaired primary GBM cell viability, showing even stronger effects in combination with TMZ. They also weakened the aggressive malignant phenotype by reducing angiogenesis, EMT, cell migration/invasion and inflammation, thus they may be considered potential candidates against GBM also for combination therapies.

Funder

Ricerca Finalizzata 2013

PRIN 2016

AIRC 2016

National Institutes of Health

Publisher

Springer Science and Business Media LLC

Subject

Genetics (clinical),Developmental Biology,Genetics,Molecular Biology

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3