Super-enhancer-associated INSM2 regulates lipid metabolism by modulating mTOR signaling pathway in neuroblastoma

Author:

Cao Haibo,Zhuo Ran,Zhang Zimu,Wang Jianwei,Tao Yanfang,Yang Randong,Guo Xinyi,Chen Yanling,Jia Siqi,Yao Ye,Yang Pengcheng,Yu Juanjuan,Jiao Wanyan,Li Xiaolu,Fang Fang,Xie Yi,Li Gen,Wu Di,Wang Hairong,Feng Chenxi,Xu Yunyun,Li Zhiheng,Pan JianORCID,Wang Jian

Abstract

Abstract Background Abnormal lipid metabolism is one of the most prominent metabolic changes in cancer. Studies have shown that lipid metabolism also plays an important role in neuroblastoma. We recently discovered that the insulinoma-associated 2 gene (INSM2) could regulate lipid metabolism in neuroblastoma (NB) and is improperly controlled by super enhancers, a mammalian genome region that has been shown to control the expression of NB cell identity genes. However, the specific molecular pathways by which INSM2 leads to NB disease development are unknown. Results We identified INSM2 as a gene regulated by super enhancers in NB. In addition, INSM2 expression levels were significantly upregulated in NB and correlated with poor prognosis in patients. We found that INSM2 drives the growth of NB cell lines both in vitro and in vivo. Knocking down INSM2 inhibited fatty acid metabolism in NB cells. Mechanistically, INSM2 regulates the expression of SREBP1 by regulating the mTOR signaling pathway, which in turn affects lipid metabolism, thereby mediating the occurrence and development of neuroblastoma. Conclusion INSM2 as a super-enhancer-associated gene could regulates lipid metabolism by modulating mTOR signaling pathway in neuroblastoma.

Funder

Jiangsu Provincial Key Research and Development Program

the Science and Technology Project of Soochow

Suzhou Introduced Project of Clinical Medical Expert Team

Suzhou Clinical Medical Center

National Natural Science Foundation of China

Science and Technology Support Program of Jiangsu Province

Publisher

Springer Science and Business Media LLC

Subject

General Biochemistry, Genetics and Molecular Biology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3