A genetic predictive model for precision treatment of diffuse large B-cell lymphoma with early progression

Author:

Ma Jialin,Yan Zheng,Zhang Jiuyang,Zhou Wenping,Yao Zhihua,Wang Haiying,Chu Junfeng,Yao Shuna,Zhao Shuang,Zhang Peipei,Xu Yuanlin,Xia Qingxin,Ma Jie,Wei Bing,Yang Shujun,Liu Kangdong,Guo Yongjun,Liu YanyanORCID

Abstract

Abstract Background Early progression after the first-line R-CHOP treatment leads to a very dismal outcome and necessitates alternative treatment for patients with diffuse large B-cell lymphoma (DLBCL). This study aimed to develop a genetic predictive model for early progression and evaluate its potential in advancing alternative treatment. Methods Thirty-two hotspot driver genes were examined in 145 DLBCL patients and 5 DLBCL cell lines using next-generation sequencing. The association of clinical features, cell-of-origin, double expression, positive p53 protein, and gene alterations with early progression was analyzed, and the genetic predictive model was developed based on the related independent variables and assessed by the area under receiver operating characteristic. The potential of novel treatment based on the modeling was investigated in in-vitro DLBCL cell lines and in vivo xenograft mouse models. Results The frequency of CD79B (42.86% vs 9.38%, p = 0.000) and PIM1 mutations (38.78% vs 17.71%, p = 0.005) showed a significant increase in patients with early progression. CD79B and PIM1 mutations were associated with complex genetic events, double expression, non-GCB subtype, advance stage and unfavorable prognosis. A powerful genetic predictive model (AUROC = 0.771, 95% CI: 0.689–0.853) incorporating lactate dehydrogenase levels (OR = 2.990, p = 0.018), CD79B mutations (OR = 5.970, p = 0.001), and PIM1 mutations (OR = 3.021, p = 0.026) was created and verified in the other cohort. This modeling for early progression outperformed the prediction accuracy of conventional International Prognostic Index, and new molecular subtypes of MCD and Cluster 5. CD79B and PIM1 mutations indicated a better response to inhibitors of BTK (ibrutinib) and pan-PIM kinase (AZD 1208) through repressing activated oncogenic signaling. Since the two inhibitors failed to decrease BCL2 level, BCL2 inhibitor (venetoclax) was added and demonstrated to enhance their apoptosis-inducing activity in mutant cells with double expression. Conclusions The genetic predictive model provides a robust tool to identify early progression and determine precision treatment. These findings warrant the development of optimal alternative treatment in clinical trials.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Biochemistry, medical,Clinical Biochemistry,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3