m6A modification suppresses ocular melanoma through modulating HINT2 mRNA translation

Author:

Jia Ruobing,Chai Peiwei,Wang Shanzheng,Sun Baofa,Xu Yangfan,Yang YingORCID,Ge Shengfang,Jia Renbing,Yang Yun-Gui,Fan Xianqun

Abstract

AbstractBackgroundDynamic N6-methyladenosine (m6A) RNA modification generated and erased by N6-methyltransferases and demethylases regulates gene expression, alternative splicing and cell fate. Ocular melanoma, comprising uveal melanoma (UM) and conjunctival melanoma (CM), is the most common primary eye tumor in adults and the 2nd most common melanoma. However, the functional role of m6A modification in ocular melanoma remains unclear.Methodsm6A assays and survival analysis were used to explore decreased global m6A levels, indicating a late stage of ocular melanoma and a poor prognosis. Multiomic analysis of miCLIP-seq, RNA-seq and Label-free MS data revealed that m6A RNA modification posttranscriptionally promoted HINT2 expression. RNA immunoprecipitation (RIP)-qPCR and dual luciferase assays revealed thatHINT2mRNA specifically interacted with YTHDF1. Furthermore, polysome profiling analysis indicated a greater amount ofHINT2mRNA in the translation pool in ocular melanoma cells with higher m6A methylation.ResultsHere, we show that RNA methylation significantly inhibits the progression of UM and CM. Ocular melanoma samples showed decreased m6A levels, indicating a poor prognosis. Changes in global m6A modification were highly associated with tumor progression in vitro and in vivo. Mechanistically, YTHDF1 promoted the translation of methylatedHINT2mRNA, a tumor suppressor in ocular melanoma.ConclusionsOur work uncovers a critical function for m6A methylation in ocular melanoma and provides additional insight into the understanding of m6A modification.

Funder

Research Grant of the Shanghai Science and Technology Committee

National Natural Science Foundation of China

CAS Key Research Projects of the Frontier Science

Shanghai Municipal Science and Technology Major Project

National Key R&D Program of China

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Oncology,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3