m6A Methylation-Mediated Stabilization of LINC01106 Suppresses Bladder Cancer Progression by Regulating the miR-3148/DAB1 Axis

Author:

Liu Jun1,Tian Cong1,Qiao Jiajia1,Deng Keming2,Ye Xiongjun3,Xiong Liulin1

Affiliation:

1. Department of Urology, Peking University People’s Hospital, Beijing 100034, China

2. The Second Clinical Medical College, Lanzhou University, Lanzhou 730000, China

3. Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China

Abstract

Background: The pivotal roles of long noncoding RNAs (lncRNAs) in the realm of cancer biology, inclusive of bladder cancer (BCa), have been substantiated through various studies. Remarkably, RNA methylation, especially m6A modification, has demonstrated its influence on both coding and noncoding RNAs. Nonetheless, the explicit impact of RNA methylation on lncRNAs and its subsequent contribution to the progression of BCa remains to be elucidated. Methods: In the present investigation, we scrutinized the expression and m6A methylation status of LINC01106, employing quantitative real-time PCR (qRT–PCR) and methylated RNA immunoprecipitation (MeRIP)-qPCR. To decipher the regulatory mechanism underpinning LINC01106, we utilized RNA immunoprecipitation (RIP)-qPCR, methylated RNA immunoprecipitation (MeRIP) assays, and bioinformatic analysis. Furthermore, the CRISPR/dCas13b-METTL3-METTL14 system was implemented to probe the function of LINC01106. Results: The findings of our study indicated that LINC01106 is under expressed and exhibits diminished m6A methylation levels in BCa tissues when compared those of normal controls. A diminished expression of LINC01106 was associated with a less favorable prognosis in BCa patients. Intriguingly, CRISPR-mediated hypermethylation of LINC01106, facilitated by dCas13b-M3-M14, abolished the malignant phenotype of the BCa cells, an effect that could be inverted by Disabled-1 (DAB1) knockdown. From a mechanistic standpoint, we identified an m6A modification site on LINC01106 and highlighted YTHDC1 as a potential reader protein implicated in this process. Additionally, a positive correlation between DAB1 and LINC01106 expression was observed, with miR-3148 potentially acting as a mediator in this relationship. Conclusions: In summary, our research unveils a suppressive regulatory role of the LINC01106/miR-3148/DAB1 axis in the progression of BCa and underscores the YTHDC1-mediated m6A modification mechanism in regards to LINC01106. These revelations propose a new therapeutic target for the management of BCa.

Funder

Peking University People’s Hospital

Publisher

MDPI AG

Subject

General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3