Coix seed oil alleviates synovial angiogenesis through suppressing HIF-1α/VEGF-A signaling pathways via SIRT1 in collagen-induced arthritis rats

Author:

Xu Qiangqiang,Kong Hongxi,Ren Shuang,Meng Fanyan,Liu Ruoshi,Jin Hongxin,Zhang JieORCID

Abstract

Abstract Background Rheumatoid arthritis (RA) is a chronic autoimmune disorder characterized by symmetric arthritis. Coix Seed Oil (CSO) has been shown to reduce inflammation in collagen induced arthritis (CIA) rats. However, the effect of CSO on synovial angiogenesis in RA is unknown. In this study, we aimed to explore whether CSO could inhibit RA synovial angiogenesis and elucidate the underlying mechanisms. Methods CIA rat models were established and subjected to different doses of CSO treatments for four weeks in vivo. Arthritis index, paw swelling, and weight were recorded to assess clinical symptoms. Hematoxylin and Eosin staining, Safarnin O fast green staining, Micro-CT, Immunohistochemical, and Immunofluorescence (IF) staining were performed to examined changes in synovial and joint tissues. The serum HIF-1α and VEGF-A levels were evaluated through enzyme-linked immunosorbent assay. Fibroblast-like synoviocytes (FLS) of rats was stimulated with tumor necrosis factor-α (TNF-α) for developing inflammatory model in vitro. Optimal concentrations of CSO and TNF-α for stimulation were measured through Cell Counting Kit-8 test. Wound healing and Transwell migration experiments were employed to determine FLS migratory ability. IF staining was performed to assess HIF-1α nuclear translocation in FLS. Protein levels of SIRT1, HIF-1α, VEGF-A, and CD31 were assessed through Western blot. The isolated aortic rings were induced with recombinant rat VEGF-A 165 (VEGF-A165) to observe the CSO inhibitory impact on angiogenesis ex vivo. Results CSO attenuated the progression of arthritis in CIA rats, mitigated histopathological deterioration in synovial and joint tissues, significantly inhibited immature vessels labeled with CD31+/αSMA, and reduced the micro-vessels in VEGF-A165 induced aortic rings. Moreover, it upregulated SIRT1 protein levels in CIA rats and TNF-α induced FLS, but decreased HIF-1α and VEGF-A protein levels. Furthermore, CSO inhibited the migration ability and HIF-1α nuclear translocation of TNF-α induced FLS. Finally, suppressing SIRT1 levels in TNF-α induced FLS enhanced their migration ability, HIF-1α nuclear translocation, and the protein levels of HIF-1α, VEGF-A, and CD31, whereas the inhibitory effect of CSO on TNF-α induced FLS was severely constrained. Conclusions This study indicates that CSO can alleviate synovial angiogenesis through suppressing HIF-1α/VEGF-A signaling pathways via SIRT1 in CIA rats.

Funder

the National Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Complementary and alternative medicine,Pharmacology

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3