Increased prime edit rates in KCNQ2 and SCN1A via single nicking all-in-one plasmids

Author:

Dirkx N.,Weuring Wout J.ORCID,De Vriendt E.,Smal N.,van de Vondervoort J.,van ’t Slot Ruben,Koetsier M.,Zonnekein N.,De Pooter Tim,Weckhuysen S.,Koeleman B. P. C.

Abstract

AbstractBackgroundPrime editing (PE) is the most recent gene editing technology able to introduce targeted alterations to the genome, including single base pair changes, small insertions, and deletions. Several improvements to the PE machinery have been made in the past few years, and these have been tested in a range of model systems including immortalized cell lines, stem cells, and animal models. While double nicking RNA (dncRNA) PE systems PE3 and PE5 currently show the highest editing rates, they come with reduced accuracy as undesired indels or SNVs arise at edited loci. Here, we aimed to improve single ncRNA (sncRNA) systems PE2 and PE4max by generating novel all-in-one (pAIO) plasmids driven by an EF-1α promoter, which is especially suitable for human-induced pluripotent stem cell (hiPSC) models.ResultspAIO-EF1α-PE2 and pAIO-EF1α-PE4max were used to edit the voltage gated potassium channel gene KCNQ2 and voltage gated sodium channel gene SCN1A. Two clinically relevant mutations were corrected using pAIO-EF1α-PE2 including the homozygous truncating SCN1A R612* variant in HEK293T cells and the heterozygous gain-of-function KCNQ2 R201C variant in patient-derived hiPSC. We show that sncRNA PE yielded detectable editing rates in hiPSC ranging between 6.4% and 9.8%, which was further increased to 41% after a GFP-based fluorescence-activated cell sorting (FACS) cell sorting step. Furthermore, we show that selecting the high GFP expressing population improved editing efficiencies up to 3.2-fold compared to the low GFP expressing population, demonstrating that not only delivery but also the number of copies of the PE enzyme and/or pegRNA per cell are important for efficient editing. Edit rates were not improved when an additional silent protospacer-adjacent motif (PAM)-removing alteration was introduced in hiPSC at the target locus. Finally, there were no genome-wide off-target effects using pAIO-EF1α-PE2 and no off-target editing activity near the edit locus highlighting the accuracy of snc prime editors.ConclusionTaken together, our study shows an improved efficacy of EF-1α driven sncRNA pAIO-PE plasmids in hiPSC reaching high editing rates, especially after FACS sorting. Optimizing these sncRNA PE systems is of high value when considering future therapeutic in vivo use, where accuracy will be extremely important.

Funder

Vrienden WKZ

FWO-FKM

Queen Elisabeth Medical Foundation

FWO-SB

European Joint Programme on Rare Disease JTC 2020

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Developmental Biology,Plant Science,General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,Physiology,Ecology, Evolution, Behavior and Systematics,Structural Biology,Biotechnology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3