Machine learning-based approach for predicting low birth weight

Author:

Ranjbar Amene,Montazeri Farideh,Farashah Mohammadsadegh Vahidi,Mehrnoush Vahid,Darsareh Fatemeh,Roozbeh Nasibeh

Abstract

Abstract Background Low birth weight (LBW) has been linked to infant mortality. Predicting LBW is a valuable preventative tool and predictor of newborn health risks. The current study employed a machine learning model to predict LBW. Methods This study implemented predictive LBW models based on the data obtained from the “Iranian Maternal and Neonatal Network (IMaN Net)” from January 2020 to January 2022. Women with singleton pregnancies above the gestational age of 24 weeks were included. Exclusion criteria included multiple pregnancies and fetal anomalies. A predictive model was built using eight statistical learning models (logistic regression, decision tree classification, random forest classification, deep learning feedforward, extreme gradient boost model, light gradient boost model, support vector machine, and permutation feature classification with k-nearest neighbors). Expert opinion and prior observational cohorts were used to select candidate LBW predictors for all models. The area under the receiver operating characteristic curve (AUROC), accuracy, precision, recall, and F1 score were measured to evaluate their diagnostic performance. Results We found 1280 women with a recorded LBW out of 8853 deliveries, for a frequency of 14.5%. Deep learning (AUROC: 0.86), random forest classification (AUROC: 0.79), and extreme gradient boost classification (AUROC: 0.79) all have higher AUROC and perform better than others. When the other performance parameters of the models mentioned above with higher AUROC were compared, the extreme gradient boost model was the best model to predict LBW with an accuracy of 0.79, precision of 0.87, recall of 0.69, and F1 score of 0.77. According to the feature importance rank, gestational age and prior history of LBW were the top critical predictors. Conclusions Although this study found that the extreme gradient boost model performed well in predicting LBW, more research is needed to make a better conclusion on the performance of ML models in predicting LBW.

Publisher

Springer Science and Business Media LLC

Subject

Obstetrics and Gynecology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3