Helicobacter pylori promotes gastric intestinal metaplasia through activation of IRF3-mediated kynurenine pathway

Author:

Liang Xinhua,Du Wenjun,Huang Ling,Xiang Li,Pan Wenxu,Yang Fangying,Zheng Fengfeng,Xie Yongwu,Geng Lanlan,Gong Sitang,Xu Wanfu

Abstract

Abstract Background Metabolic reprogramming is a critical event for cell fate and function, making it an attractive target for clinical therapy. The function of metabolic reprogramming in Helicobacter pylori (H. pylori)-infected gastric intestinal metaplasia remained to be identified. Methods Xanthurenic acid (XA) was measured in gastric cancer cells treated with H. pylori or H. pylori virulence factor, respectively, and qPCR and WB were performed to detect CDX2 and key metabolic enzymes expression. A subcellular fractionation approach, luciferase and ChIP combined with immunofluorescence were applied to reveal the mechanism underlying H. pylori mediated kynurenine pathway in intestinal metaplasia in vivo and in vitro. Results Herein, we, for the first time, demonstrated that H. pylori contributed to gastric intestinal metaplasia characterized by enhanced Caudal-related homeobox transcription factor-2 (CDX2) and mucin2 (MUC2) expression, which was attributed to activation of kynurenine pathway. H. pylori promoted kynurenine aminotransferase II (KAT2)-mediated kynurenine pathway of tryptophan metabolism, leading to XA production, which further induced CDX2 expression in gastric epithelial cells. Mechanically, H. pylori activated cyclic guanylate adenylate synthase (cGAS)-interferon regulatory factor 3 (IRF3) pathway in gastric epithelial cells, leading to enhance IRF3 nuclear translocation and the binding of IRF3 to KAT2 promoter. Inhibition of KAT2 could significantly reverse the effect of H. pylori on CDX2 expression. Also, the rescue phenomenon was observed in gastric epithelial cells treated with H. pylori after IRF3 inhibition in vitro and in vivo. Most importantly, phospho-IRF3 was confirmed to be a clinical positive relationship with CDX2. Conclusion These finding suggested H. pylori contributed to gastric intestinal metaplasia through KAT2-mediated kynurenine pathway of tryptophan metabolism via cGAS-IRF3 signaling, targeting the kynurenine pathway could be a promising strategy to prevent gastric intestinal metaplasia caused by H. pylori infection.

Funder

Fujian Province young and middle-aged teachers Education Research Project

Guangzhou Medical Key Disciplines and Specialties

Guangzhou key laboratory of Pediatric Inflammatory Bowel Disease

National Natural Science Foundation of China

Basic and Applied Basic Research Foundation of Guangdong Province

Basic and applied research project of Guangzhou Municipal Science and Technology Project

National Health Commission Key Laboratory of Tropical Disease Prevention and Control

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3