Combination of Size-Exclusion Chromatography and Ultracentrifugation Improves the Proteomic Profiling of Plasma-Derived Small Extracellular Vesicles

Author:

Wei Rui,Zhao Libo,Kong Guanyi,Liu Xiang,Zhu Shengtao,Zhang Shutian,Min LiORCID

Abstract

Abstract Background Circulating small extracellular vesicles (sEVs) and its associated proteins are of great interest in the early detection of many diseases. However, there is no gold standard for plasma sEVs isolation, especially for proteomic profiling which could be largely affected by contamination such as lipoproteins and plasma proteins. Previous studies suggested combinations of different sEVs isolation methods could improve the yield and purity of the isolated fractions. Nevertheless, there is no systematic evaluation of size-exclusion chromatography (SEC), ultracentrifugation (UC), and their combination in a proteomic perspective. Results Plasma samples were collected from healthy individuals, and sEVs were separated by one-step SEC, one-step UC, and combining SEC with UC, respectively. Here we exhibited that the purity of sEVs was improved by SEC in contrast to traditional UC. Furthermore, by conducting a SEC procedure followed by UC, we separated sEVs with the highest purity. In the proteomic analysis, 992 protein species were identified in the plasma sEVs isolated by our novel separation method, of which several proteins are sEVs-associated proteins but hitherto never been identified in the previous studies and database, much more than plasma sEVs isolated by UC (453) or SEC (682) alone. As compared to Vesiclepedia and Exocarta databases, plasma sEVs isolated by the new procedure kept 584 previously identified sEVs-associated proteins and 360 other proteins that have not been detected before. Detailed analysis suggested that more kinds of sEVs biomarkers, such as CD9, ALIX, and FLOT1, could be identified in plasma sEVs isolated by the novel isolation method as compared to one-step UC/SEC. Furthermore, the lower abundance ranks of common contaminants, such as lipoproteins and IgG chains, in the sEVs fractions obtained by our new method as compared to one-step UC/SEC also demonstrated the purity of sEVs had been improved. Conclusions Combining SEC with UC could significantly improve the performance of mass spectrometry-based proteomic profiling in analyzing plasma-derived sEVs.

Funder

Beijing Science and Technology Nova Program

Beijing Municipal Science and Technology Project

National Natural Science Foundation of China

Beijing Municipal Administration of Hospitals' Youth Programme

The Digestive Medical Coordinated Development Center of Beijing Municipal Administration of Hospitals

Funding Program for Excellent Talents of Beijing

Publisher

Springer Science and Business Media LLC

Subject

General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3