Genotypic divergence in mouse oocyte transcriptomes: possible pathways to hybrid vigor impacting fertility and embryogenesis

Author:

Severance Ashley L.12,Midic Uros23,Latham Keith E.1234ORCID

Affiliation:

1. Genetics Graduate Program, Michigan State University, East Lansing, Michigan

2. Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, Michigan

3. Department of Animal Science, Michigan State University, East Lansing, Michigan

4. Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, East Lansing, Michigan

Abstract

What causes hybrid vigor phenotypes in mammalian oocytes and preimplantation embryos? Answering this question should provide new insight into determinants of oocyte and embryo quality and infertility. Hybrid vigor could arise through a variety of mechanisms, many of which must operate through posttranscriptional mechanisms affecting oocyte mRNA accumulation, stability, translation, and degradation. The differential regulation of such mRNAs may impact essential pathways and functions within the oocyte. We conducted in-depth transcriptome comparisons of immature and mature oocytes of C57BL/6J and DBA/2J inbred strains and C57BL/6J × DBA/2J F1 (BDF1) hybrid oocytes with RNA sequencing, combined with novel computational methods of analysis. We observed extensive differences in mRNA expression and regulation between parental inbred strains and between inbred and hybrid genotypes, including mRNAs encoding proposed markers of oocyte quality. Unique BDF1 oocyte characteristics arise through a combination of additive dominance and incomplete dominance features in the transcriptome, with a lesser degree of transgressive mRNA expression. Special features of the BDF1 transcriptome most prominently relate to histone expression, mitochondrial function, and oxidative phosphorylation. The study reveals the major underlying mechanisms that contribute to superior properties of hybrid oocytes in a mouse model.

Funder

HHS | NIH | National Institute of Child Health and Human Development

MSU AgBioResearch

Publisher

American Physiological Society

Subject

Genetics,Physiology

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3