Epidermal growth factor receptor paracrine upregulation in idiopathic pulmonary fibrosis fibroblasts is blocked by nintedanib

Author:

Epstein Shochet Gali12ORCID,Brook Elizabetha2,Eyal Omer2,Edelstein Evgeny23,Shitrit David12

Affiliation:

1. Pulmonary Department, Meir Medical Center, Kfar Saba, Israel

2. Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel

3. Pathology Department, Meir Medical Center, Kfar Saba, Israel

Abstract

Although present in normal cells, epidermal growth factor receptor (EGFR) is overexpressed in a variety of tumors and has been associated with decreased survival. Because activated fibroblasts are considered key effectors in fibrosis and because metastatic and fibrotic processes were shown to share similar signaling pathways, we investigated the contribution of EGFR signaling to idiopathic pulmonary fibrosis (IPF) progression in lung fibroblasts derived from patients with IPF (IPF-HLF). EGFR expression and EGFR-related signaling were evaluated by Western blot and immunohistochemistry. Supernatants (SN) from cultured IPF-HLF and N-HLF were added to N-HLF, and their effect on cell phenotype was tested. Growth factor levels in the SN were measured by ELISA-based arrays. EGFR activity was blocked by erlotinib (Tarceva, 0.1–0.5 µM). Expression of EGFR, phosphorylated (p)EGFR-1068 and pAkt-473 was significantly higher in IPF-HLF compared with lung fibroblasts from control donors (N-HLF) ( P < 0.05). Apparent expression of p/total EGFR and pAkt-473 was found in the myofibroblastic foci of IPF patients. Erlotinib significantly inhibited IPF-HLF but not N-HLF proliferation. IPF-HLF-SN elevated N-HLF cell number, viability, EGFR expression, and pAkt-473 and ERK1/2 phosphorylation ( P < 0.05). Because high basic fibroblast growth factor levels were found in the IPF-HLF-SN, nintedanib (10–100 nM) was used to inhibit fibroblast growth factor receptor (FGFR) activation. Unlike erlotinib, nintedanib completely blocked IPF-HLF-SNs’ effects on the N-HLF cells in a concentration-dependent manner. In summary, IPF-HLF paracrine signaling elevates EGFR expression, which in turn, affects N-HLF survival. The FGF-EGFR interplay facilitates cellular responses that could potentially promote fibrotic disease. This interplay was successfully blocked by nintedanib.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3