Relation between discharge regularity and responses to externally applied galvanic currents in vestibular nerve afferents of the squirrel monkey

Author:

Goldberg J. M.,Smith C. E.,Fernandez C.

Abstract

Most vestibular nerve afferents can be classified as regularly or irregularly discharging. Two factors are theoretically identified as being potentially responsible for differences in discharge regularity. The first, ascribable to synaptic noise, is the variance (sigma v2) characterizing the transmembrane voltage fluctuations of the axon's spike trigger site, i.e., the place where impulses normally arise. The second factor is the slope (dmuv/dt) of the trigger site's postspike recovery function. Were (dmuv/dt) a major determinant of discharge regularity, the theory predicts that the more irregular the discharge of a unit, the greater should be its sensitivity to externally applied galvanic currents and the faster should be the postspike recovery of its electrical excitability. The predictions would not hold if differences in the discharge regularity between units largely reflected variations in sigma v. To test these predictions, the responses of vestibular nerve afferents to externally applied galvanic currents were studied in the barbiturate-anesthetized squirrel monkey. Current steps of 5-s duration and short (50 microsecond) shocks were delivered by way of the perilymphatic space of the vestibule. Results were similar regardless of which end organ an afferent innervated. The regularity of discharge of each unit was expressed by a normalized coefficient of variation (CV*). The galvanic sensitivity (beta p) of a unit, measured from its response to current steps, was linearly related to discharge regularity (CV*), there being approximately 20-fold variations in both variables across the afferent population. Various geometric factors--including fiber diameter, position of individual axons within the various nerve branches, and the configuration of unmyelinated processes within the sensory epithelium--are unlikely to have made a major contribution to the positive relation between beta P and CV*. The postspike recovery of electrical excitability was measured as response thresholds to shocks, synchronized to follow naturally occurring impulses at several different delays. Recovery in irregular units was more rapid than in regular units. Evidence is presented that externally applied currents acted at the spike trigger site rather than elsewhere in the sensory transduction process. We argue that the irregular discharge of some vestibular afferents offers no functional advantage in the encoding and transmission of sensory information. Rather, the irregularity of discharge is better viewed as a consequence of the enhanced sensitivity of these units to depolarizing influences, including afferent and efferent synaptic inputs.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 558 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3