Using Galvanic Vestibular Stimulation to Induce Post-Roll Illusion in a Fixed-Base Flight Simulator

Author:

Houben Mark M. J.,Stuldreher Ivo V.,Forbes Patrick A.,Groen Eric L.

Abstract

INTRODUCTION: The illusions of head motion induced by galvanic vestibular stimulation (GVS) can be used to compromise flight performance of pilots in fixed-base simulators. However, the stimuli used in the majority of studies fail to mimic disorientation in realistic flight because they are independent from the simulated aircraft motion. This study investigated the potential of bilateral-bipolar GVS coupled to aircraft roll in a fixed-base simulator to mimic vestibular spatial disorientation illusions, specifically the “post-roll illusion” observed during flight.METHODS: There were 14 nonpilot subjects exposed to roll stimuli in a flight simulator operating in a fixed-base mode. GVS was delivered via carbon rubber electrodes on the mastoid processes. The electrical stimulus was driven by the high-pass filtered aircraft roll rate to mimic the semicircular canals’ physiological response. The post-roll test scenarios excluded outside visual cues or instruments and required subjects to actively maintain a constant bank angle after an abrupt stop following a passive prolonged roll maneuver. The anticipated outcome was an overshot in roll elicited by the GVS signal.RESULTS: The responses across subjects showed large variability, with less than a third aligning with the post-roll illusion. Subjective ratings suggest that the high-pass filtered GVS stimuli were mild and did not induce a clear sense of roll direction. However, uncontrolled head movements during stimulation might have obscured the intended effects of GVS-evoked illusory head movements.CONCLUSION: The mild and transient GVS stimuli used in this study, together with the uncontrolled head movements, did not convincingly mimic the post-roll illusion.Houben MMJ, Stuldreher IV, Forbes PA, Groen EL. Using galvanic vestibular stimulation to induce post-roll illusion in a fixed-base flight simulator. Aerosp Med Hum Perform. 2024; 95(2):84–92.

Publisher

Aerospace Medical Association

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3