Motor skill training and strength training are associated with different plastic changes in the central nervous system

Author:

Jensen Jesper Lundbye,Marstrand Peter C. D.,Nielsen Jens B.

Abstract

Changes in corticospinal excitability induced by 4 wk of heavy strength training or visuomotor skill learning were investigated in 24 healthy human subjects. Measurements of the input-output relation for biceps brachii motor evoked potentials (MEPs) elicited by transcranial magnetic stimulation were obtained at rest and during voluntary contraction in the course of the training. The training paradigms induced specific changes in the motor performance capacity of the subjects. The strength training group increased maximal dynamic and isometric muscle strength by 31% ( P < 0.001) and 12.5% ( P = 0.045), respectively. The skill learning group improved skill performance significantly ( P < 0.001). With one training bout, the only significant change in transcranial magnetic stimulation parameters was an increase in skill learning group maximal MEP level (MEPmax) at rest ( P = 0.02) for subjects performing skill training. With repeated skill training three times per week for 4 wk, MEPmax increased and the minimal stimulation intensity required to elicit MEPs decreased significantly at rest and during contraction ( P < 0.05). In contrast, MEPmax and the slope of the input-output relation both decreased significantly at rest but not during contraction in the strength-trained subjects ( P ≤ 0.01). No significant changes were observed in a control group. A significant correlation between changes in neurophysiological parameters and motor performance was observed for skill learning but not strength training. The data show that increased corticospinal excitability may develop over several weeks of skill training and indicate that these changes may be of importance for task acquisition. Because strength training was not accompanied by similar changes, the data suggest that different adaptive changes are involved in neural adaptation to strength training.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3