Neural adaptation to resistance training: changes in evoked V-wave and H-reflex responses

Author:

Aagaard Per12,Simonsen Erik B.3,Andersen Jesper L.4,Magnusson Peter2,Dyhre-Poulsen Poul1

Affiliation:

1. Department of Neurophysiology, Institute of Medical Physiology and

2. Team Danmark Test Centre, Sports Medicine Research Unit, Bispebjerg Hospital, DK-2200 Copenhagen, Denmark

3. Anatomy Department C, Panum Institute, University of Copenhagen;

4. Copenhagen Muscle Research Centre, Rigshospitalet;

Abstract

Combined V-wave and Hoffmann (H) reflex measurements were performed during maximal muscle contraction to examine the neural adaptation mechanisms induced by resistance training. The H-reflex can be used to assess the excitability of spinal α-motoneurons, while also reflecting transmission efficiency (i.e., presynaptic inhibition) in Ia afferent synapses. Furthermore, the V-wave reflects the overall magnitude of efferent motor output from the α-motoneuron pool because of activation from descending central pathways. Fourteen male subjects participated in 14 wk of resistance training that involved heavy weight-lifting exercises for the muscles of the leg. Evoked V-wave, H-reflex, and maximal M-wave (Mmax) responses were recorded before and after training in the soleus muscle during maximal isometric ramp contractions. Maximal isometric, concentric, and eccentric muscle strength was measured by use of isokinetic dynamometry. V-wave amplitude increased ∼50% with training ( P < 0.01) from 3.19 ± 0.43 to 4.86 ± 0.43 mV, or from 0.308 ± 0.048 to 0.478 ± 0.034 when expressed relative to Mmax (± SE). H-reflex amplitude increased ∼20% ( P < 0.05) from 5.37 ± 0.41 to 6.24 ± 0.49 mV, or from 0.514 ± 0.032 to 0.609 ± 0.025 when normalized to Mmax. In contrast, resting H-reflex amplitude remained unchanged with training (0.503 ± 0.059 vs. 0.499 ± 0.063). Likewise, no change occurred in Mmax (10.78 ± 0.86 vs. 10.21 ± 0.66 mV). Maximal muscle strength increased 23–30% ( P < 0.05). In conclusion, increases in evoked V-wave and H-reflex responses were observed during maximal muscle contraction after resistance training. Collectively, the present data suggest that the increase in motoneuronal output induced by resistance training may comprise both supraspinal and spinal adaptation mechanisms (i.e., increased central motor drive, elevated motoneuron excitability, reduced presynaptic inhibition).

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3