Affiliation:
1. University of Oxford
2. Max-Planck-Institut für molekulare Zellbiologie und Genetik
3. Center for Systems Biology Dresden
4. Technische Universität Dresden
Abstract
Plants are a paradigm for active shape control in response to stimuli. For instance, it is well known that a tilted plant will eventually straighten vertically, demonstrating the influence of both an external stimulus, gravity, and an internal stimulus, proprioception. These effects can be modulated when a potted plant is additionally rotated along the plant's axis, as in a rotating clinostat, leading to intricate shapes. We use a previously derived rod model to study the response of a growing plant and the joint effects of both stimuli at all rotation speeds. In the absence of rotation, we identify a universal planar shape towards which all shoots eventually converge. With rotation, we demonstrate the existence of a stable family of three-dimensional dynamic equilibria where the plant axis is fixed in space. Further, the effect of axial growth is to induce steady behaviors, such as solitary waves. Overall, this study offers insight into the complex out-of-equilibrium dynamics of a plant in three dimensions and further establishes that internal stimuli in active materials are key for robust shape control.
Published by the American Physical Society
2024
Funder
Engineering and Physical Sciences Research Council
Royal Society
St. John's College, University of Oxford
Publisher
American Physical Society (APS)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献