Ultrafast Electron-Electron Scattering in Metallic Phase of 2HNbSe2 Probed by High Harmonic Generation

Author:

Takeda K. S.1,Uchida K.1ORCID,Nagai K.1ORCID,Kusaba S.1ORCID,Takahashi S.1,Tanaka K.1ORCID

Affiliation:

1. Department of Physics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan

Abstract

Electron-electron scattering on the order of a few to tens of femtoseconds plays a crucial role in the ultrafast electron dynamics of conventional metals. When mid-infrared light is used for driving and the period of light field is comparable to the scattering time in metals, unique light-driven states and nonlinear optical responses associated with the scattering process are expected to occur. Here, we use high-harmonics spectroscopy to investigate the effect of electron-electron scattering on the electron dynamics in thin film 2HNbSe2 driven by a mid-infrared field. We observed odd-order high harmonics up to 9th order as well as a broadband emission from hot electrons in the energy range from 1.5 to 4.0 eV. The electron-electron scattering time in 2H-NbSe2 was estimated from the broadband emission to be almost the same as the period of the mid-infrared light field. A comparison between experimental results and a numerical calculation reveals that competition and cooperation between the driving and scattering enhances the nonperturbative behavior of high harmonics in metals, causing a highly nonequilibrium electronic state corresponding to several thousand Kelvin. Published by the American Physical Society 2024

Funder

Japan Society for the Promotion of Science

Japan Science and Technology Agency

Ministry of Education, Culture, Sports, Science and Technology

Grant-in-Aid for Young Scientists

Grant-in-Aid for Challenging Research

Publisher

American Physical Society (APS)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3