Affiliation:
1. Max Planck Institute for the Physics of Complex Systems
2. Queen Mary University of London
Abstract
We study a classical Ising model on the honeycomb lattice with local two-body interactions and present strong evidence that at low temperature it realizes a higher-rank Coulomb liquid with fracton excitations. We show that the excitations are (type-I) fractons, appearing at the corners of membranes of spin flips. Because of the threefold rotational symmetry of the honeycomb lattice, these membranes can be locally combined such that no excitations are created, giving rise to a set of ground states described as a liquid of membranes. We devise a cluster Monte Carlo algorithm purposefully designed for this problem that moves pairs of defects, and use it to study the finite-temperature behavior of the model. We show evidence for a first order transition from a high-temperature paramagnet to a low-temperature phase whose correlations precisely match those predicted for a higher-rank Coulomb phase.
Published by the American Physical Society
2024
Funder
Deutsche Forschungsgemeinschaft
Publisher
American Physical Society (APS)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献