Affiliation:
1. Rudolf Peierls Centre for Theoretical Physics, Parks Road, Oxford OX1 3PU, United Kingdom
2. Princeton University
3. University of Zurich
4. Ghent University
Abstract
We study the phase diagram of magic-angle twisted symmetric trilayer graphene in the presence of uniaxial heterostrain and interlayer displacement field. For experimentally reasonable strain, our mean-field analysis finds robust Kekulé spiral order whose doping-dependent ordering vector is incommensurate with the moiré superlattice, consistent with recent scanning tunneling microscopy experiments, and paralleling the behavior of closely related twisted bilayer graphene (TBG) systems. Strikingly, we identify a possibility absent in TBG: the existence of Kekulé spiral order even at zero strain for experimentally realistic values of the interlayer potential in a trilayer. Our studies also reveal a complex pattern of charge transfer between weakly and strongly dispersive bands in strained trilayer samples as the density is tuned by electrostatic gating, that can be understood intuitively in terms of the “cascades” in the compressibility of magic-angle TBG.
Published by the American Physical Society
2024
Funder
Engineering and Physical Sciences Research Council
European Research Council
Horizon 2020
Universität Zürich
Leverhulme Trust International Professorship
Publisher
American Physical Society (APS)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献