Quantification and Brain Targeting of Eugenol-Loaded Surface Modified Nanoparticles Through Intranasal Route in the Treatment of Cerebral Ischemia

Author:

Ahmad Niyaz1,Ahmad Rizwan2,Alam Md3,Ahmad Farhan4

Affiliation:

1. Department of Pharmaceutics, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam, Kingdom of Saudi Arabia

2. Department of Natural Products and Alternative Medicine, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam, Kingdom of Saudi Arabia

3. Department of Pharmaceutics, School of Medical and Allied Sciences, Galgotias University, Gautam Budh Nagar, Greater Noida, India

4. Nanomedicine Lab, Department of Pharmaceutics, Faculty of Pharmacy, Jamia Hamdard, Hamdard Nagar, New Delhi, India

Abstract

Abstract Objective To enhance brain bioavailability for intranasally administered Eugenol-encapsulated-chitosan-coated-PCL-Nanoparticles (CS-EUG-PCL-NPs). Methods Chitosan-coated-PCL-Nanoparticles (CS-PCL-NPs) were developed through double emulsification-solvent evaporation technique and further characterized for particle size, zeta potential, size distribution, encapsulation efficiency as well as in vitro drug release. UPLC-PDA method was developed to evaluate brain-drug uptake for optimized CS-EUG-PCL-NPs and to determine it’s pharmacokinetic in rat’s brain as well as plasma. Results Mean particles size (224.5±5.31), polydispersity index (PDI) i. e. (0.216±0.020) and entrapment efficiency (68.13±5.03) was determined for developed NPs. UPLC-PDA-eλ study showed a significantly high mucoadhesive potential of CS-EUG-PCL-NPs and least for conventional and homogenized nanoformulation; elution time for EUG and internal standard (IS) thymoquinone as 3.50 and 3.61 min were observed respectively. Furthermore, intra and inter-assay (%CV) of 0.25–1.57, %accuracy (97.11-99.00%) as well as a linear dynamic range (100.00 ng/mL–2500.0 ng/mL), was observed. Pharmacokinetic studies in Wistar rat brain and plasma exhibited a high AUC0-24 alongwith an amplified Cmax (p**<0.01) as compared to i. v. treated group. Conclusions Intranasal administration of developed CS-coated-EUG-loaded-PCL-NPs enhanced the drug bioavailability in rat brain and thus preparation of Eugenol-NPs may help treat cerebral ischemia effectively. The toxicity studies performed at the end revealed safe nature of optimized nanoformulation.

Publisher

Georg Thieme Verlag KG

Subject

Drug Discovery,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3