Development of CryoVR, a virtual reality training system for hands-on cryoEM operations

Author:

Dong JiahuiORCID,Li DaoyiORCID,Ozcan KadirORCID,Wan DayuORCID,Jiang WenORCID,Chen YingjieORCID

Abstract

Cryogenic electron microscopy (cryoEM) has emerged as a revolutionary method for solving high-resolution structures and studying the dynamics of macromolecular complexes and viruses in near-native states. However, the availability of the equipment, and the time and cost needed for training, severely limit the opportunities for training. To solve these problems, a virtual reality-based training system, CryoVR, has been developed to prepare trainees before operating real-world cryoEM equipment. This paper describes the design and assessment of CryoVR (available at https://www.purdue.edu/cryoVR), which helps users learn cryoEM experimental procedures in a virtual environment, allowing immersive training with step-by-step tutorials with vivid visual, audio and text guidance. Implemented as a training step before a novice user interacts with the expensive real-world cryoEM equipment, CryoVR can help users to become familiar with hands-on operational procedures through multiple training modules and earning certificates after passing the built-in Exam mode. Qualitative evaluation and feedback of CryoVR from users with various levels of cryoEM experience indicate the substantial value of CryoVR as a tool for a comprehensive cryoEM procedural training.

Funder

National Institutes of Health

Publisher

International Union of Crystallography (IUCr)

Subject

Structural Biology

Reference42 articles.

1. Building educational activities for understanding: An elaboration on the embodied-design framework and its epistemic grounds

2. Best practices for managing large CryoEM facilities

3. Acquisition of cognitive skill.

4. Borges, M., Symington, A., Coltin, B., Smith, T. & Ventura, R. (2018). 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 2610-2615. Piscataway: IEEE.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3