Calpain activity is negatively regulated by a KCTD7–Cullin-3 complex via non-degradative ubiquitination

Author:

Sharma Jaiprakash,Mulherkar Shalaka,Chen Uan-I,Xiong Yan,Bajaj Lakshya,Cho Byoung-Kyu,Goo Young Ah,Leung Hon-Chiu Eastwood,Tolias Kimberley F.,Sardiello Marco

Abstract

AbstractCalpains are a class of non-lysosomal cysteine proteases that exert their regulatory functions via limited proteolysis of their substrates. Similar to the lysosomal and proteasomal systems, calpain dysregulation is implicated in the pathogenesis of neurodegenerative disease and cancer. Despite intensive efforts placed on the identification of mechanisms that regulate calpains, however, calpain protein modifications that regulate calpain activity are incompletely understood. Here we show that calpains are regulated by KCTD7, a cytosolic protein of previously uncharacterized function whose pathogenic mutations result in epilepsy, progressive ataxia, and severe neurocognitive deterioration. We show that KCTD7 works in complex with Cullin-3 and Rbx1 to execute atypical, non-degradative ubiquitination of calpains at specific sites (K398 of calpain 1, and K280 and K674 of calpain 2). Experiments based on single-lysine mutants of ubiquitin determined that KCTD7 mediates ubiquitination of calpain 1 via K6-, K27-, K29-, and K63-linked chains, whereas it uses K6-mediated ubiquitination to modify calpain 2. Loss of KCTD7-mediated ubiquitination of calpains led to calpain hyperactivation, aberrant cleavage of downstream targets, and caspase-3 activation. CRISPR/Cas9-mediated knockout of Kctd7 in mice phenotypically recapitulated human KCTD7 deficiency and resulted in calpain hyperactivation, behavioral impairments, and neurodegeneration. These phenotypes were largely prevented by pharmacological inhibition of calpains, thus demonstrating a major role of calpain dysregulation in KCTD7-associated disease. Finally, we determined that Cullin-3–KCTD7 mediates ubiquitination of all ubiquitous calpains. These results unveil a novel mechanism and potential target to restrain calpain activity in human disease and shed light on the molecular pathogenesis of KCTD7-associated disease.

Funder

U.S. Department of Health & Human Services | NIH | National Institute of Neurological Disorders and Stroke

U.S. Department of Health & Human Services | National Institutes of Health

Beyond Batten Disease Foundation

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Genetics,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3