Physical and biochemical regulation of integrin release during rear detachment of migrating cells

Author:

Palecek S.P.1,Huttenlocher A.1,Horwitz A.F.1,Lauffenburger D.A.1

Affiliation:

1. Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.

Abstract

Cell migration can be considered as a repeated cycle of membrane protrusion and attachment, cytoskeletal contraction and rear detachment. At intermediate and high levels of cell-substratum adhesiveness, cell speed appears to be rate-limited by rear detachment, specifically by the disruption of cytoskeleton-adhesion receptor-extracellular matrix (ECM) linkages. Often, cytoskeletal linkages fracture to release integrin adhesion receptors from the cell. Cell-extracellular matrix bonds may also dissociate, allowing the integrins to remain with the cell. To investigate molecular mechanisms involved in fracturing these linkages and regulating cell speed, we have developed an experimental system to track integrins during the process of rear retraction in Chinese hamster ovary (CHO) cells. Integrin expression level was varied by transfecting CHO B2 cells, which express very little endogenous alpha5 integrin, with a plasmid containing human alpha5 integrin cDNA and sorting the cells into three populations with different alpha5 expression levels. Receptor/ligand affinity was varied using CHO cells transfected with either alphaIIbbeta3 or alphaIIbbeta3(beta1-2), a high affinity variant. alphaIIbbeta3(beta1-2) is activated to a higher affinity state with an anti-LIBS2 antibody. Fluorescent probes were conjugated to non-adhesion perturbing anti-integrin antibodies, which label integrins in CHO cells migrating on a matrix-coated glass coverslip. The rear retraction area was determined using phase contrast microscopy and integrins initially in this area were tracked by fluorescence microscopy and a cooled CCD camera. We find that rear retraction rate appears to limit cell speed at intermediate and high adhesiveness, but not at low adhesiveness. Upon rear retraction, the amount of integrin released from the cell increases as extracellular matrix concentration, receptor level and receptor-ligand affinity increase. In fact, integrin release is a constant function of cell-substratum adhesiveness and the number of cell-substratum bonds. In the adhesive regime where rear detachment limits the rate of cell migration, cell speed has an inverse relationship to the amount of integrin released at the rear of the cell. At high cell-substratum adhesiveness, calpain, a Ca2+-dependent protease, is also involved in release of cytoskeletal linkages during rear retraction. Inhibition of calpain results in decreased integrin release from the cell membrane, and consequently a decrease in cell speed, during migration. These observations suggest a model for rear retraction in which applied tension and calpain-mediated cytoskeletal linkage cleavage are required at high adhesiveness, but only applied tension is required at low adhesiveness.

Publisher

The Company of Biologists

Subject

Cell Biology

Cited by 164 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3